ﻻ يوجد ملخص باللغة العربية
We present 2 - 5 micron adaptive optics (AO) imaging and polarimetry of the famous hypergiant stars IRC +10420 and VY Canis Majoris. The imaging polarimetry of IRC +10420 with MMT-Pol at 2.2 micron resolves nebular emission with intrinsic polarization of 30%, with a high surface brightness indicating optically thick scattering. The relatively uniform distribution of this polarized emission both radially and azimuthally around the star confirms previous studies that place the scattering dust largely in the plane of the sky. Using constraints on scattered light consistent with the polarimetry at 2.2 micron, extrapolation to wavelengths in the 3 - 5 micron band predicts a scattered light component significantly below the nebular flux that is observed in our LBT/LMIRCam 3 - 5 micron AO imaging. Under the assumption this excess emission is thermal, we find a color temperature of ~ 500 K is required, well in excess of the emissivity-modified equilibrium temperature for typical astrophysical dust. The nebular features of VY CMa are found to be highly polarized (up to 60%) at 1.3 micron, again with optically thick scattering required to reproduce the observed surface brightness. This stars peculiar nebular feature dubbed the Southwest Clump is clearly detected in the 3.1 micron polarimetry as well, which, unlike IRC+10420, is consistent with scattered light alone. The high intrinsic polarizations of both hypergiants nebulae are compatible with optically thick scattering for typical dust around evolved dusty stars, where the depolarizing effect of multiple scatters is mitigated by the grains low albedos.
We present adaptive optics images of the extreme red supergiant VY Canis Majoris in the Ks, L and M bands (2.15 to 4.8 micron) made with LMIRCam on the Large Binocular Telescope (LBT). The peculiar Southwest Clump previously imaged from 1 to 2.2 micr
The processes leading to dust formation and the subsequent role it plays in driving mass loss in cool evolved stars is an area of intense study. Here we present high resolution ALMA Science Verification data of the continuum emission around the highl
Titanium dioxide, TiO$_2$, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO$_2$ has been detected only in the complex environment of the red supergiant V
Imaging and spectroscopy of the knots, clumps, and extended arcs in the complex ejecta of VY CMa confirm a record of high mass loss events over the past few hundred years. HST/STIS spectroscopy of numerous small knots close to the star allow us to me
The formation of inorganic dust in circumstellar environments of evolved stars is poorly understood. Spectra of molecules thought to be most important for the nucleation, i.e. AlO, TiO, and TiO2, have been recently detected in the red supergiant VY C