ﻻ يوجد ملخص باللغة العربية
We present optical and near-infrared photometry of GRB~140606B ($z=0.384$), and optical photometry and spectroscopy of its associated supernova (SN). The results of our modelling indicate that the bolometric properties of the SN ($M_{rm Ni} = 0.4pm0.2$~M$_{odot}$, $M_{rm ej} = 5pm2$~M$_{odot}$, and $E_{rm K} = 2pm1 times 10^{52}$ erg) are fully consistent with the statistical averages determined for other GRB-SNe. However, in terms of its $gamma$-ray emission, GRB~140606B is an outlier of the Amati relation, and occupies the same region as low-luminosity ($ll$) and short GRBs. The $gamma$-ray emission in $ll$GRBs is thought to arise in some or all events from a shock-breakout (SBO), rather than from a jet. The measured peak photon energy ($E_{rm p}approx800$ keV) is close to that expected for $gamma$-rays created by a SBO ($gtrsim1$ MeV). Moreover, based on its position in the $M_{V,rm p}$--$L_{rm iso,gamma}$~plane and the $E_{rm K}$--$Gammabeta$~plane, GRB~140606B has properties similar to both SBO-GRBs and jetted-GRBs. Additionally, we searched for correlations between the isotropic $gamma$-ray emission and the bolometric properties of a sample of GRB-SNe, finding that no statistically significant correlation is present. The average kinetic energy of the sample is $bar{E}_{rm K} = 2.1times10^{52}$ erg. All of the GRB-SNe in our sample, with the exception of SN 2006aj, are within this range, which has implications for the total energy budget available to power both the relativistic and non-relativistic components in a GRB-SN event.
Gamma-ray bursts (GRBs) of the long-duration class are the most luminous sources of electromagnetic radiation known in the Universe. They are generated by outflows of plasma ejected at near the speed of light by newly formed neutron stars or black ho
We present hydrodynamic simulations of the hot cocoon produced when a relativistic jet passes through the gamma-ray burst (GRB) progenitor star and its environment, and we compute the lightcurve and spectrum of the radiation emitted by the cocoon. Th
We present 3D simulations of core-collapse supernovae from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, considering two 15 Msun red supergiants (RSG) and two blue supergiants (BSG) of 15 Msun and
The Swift burst GRB 110205A was a very bright burst visible in the Northern hemisphere. GRB 110205A was intrinsically long and very energetic and it occurred in a low-density interstellar medium environment, leading to delayed afterglow emission and
The TESS exoplanet-hunting mission detected the rising and decaying optical afterglow of GRB 191016A, a long Gamma-Ray Burst (GRB) detected by Swift-BAT but without prompt XRT or UVOT follow-up due to proximity to the moon. The afterglow has a late p