ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB 110205A: Anatomy of a long gamma-ray burst

150   0   0.0 ( 0 )
 نشر من قبل Bruce Gendre
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Gendre




اسأل ChatGPT حول البحث

The Swift burst GRB 110205A was a very bright burst visible in the Northern hemisphere. GRB 110205A was intrinsically long and very energetic and it occurred in a low-density interstellar medium environment, leading to delayed afterglow emission and a clear temporal separation of the main emitting components: prompt emission, reverse shock, and forward shock. Our observations show several remarkable features of GRB 110205A : the detection of prompt optical emission strongly correlated with the BAT light curve, with no temporal lag between the two ; the absence of correlation of the X-ray emission compared to the optical and high energy gamma-ray ones during the prompt phase ; and a large optical re-brightening after the end of the prompt phase, that we interpret as a signature of the reverse shock. Beyond the pedagogical value offered by the excellent multi-wavelength coverage of a GRB with temporally separated radiating components, we discuss several questions raised by our observations: the nature of the prompt optical emission and the spectral evolution of the prompt emission at high-energies (from 0.5 keV to 150 keV) ; the origin of an X-ray flare at the beginning of the forward shock; and the modeling of the afterglow, including the reverse shock, in the framework of the classical fireball model.



قيم البحث

اقرأ أيضاً

The TESS exoplanet-hunting mission detected the rising and decaying optical afterglow of GRB 191016A, a long Gamma-Ray Burst (GRB) detected by Swift-BAT but without prompt XRT or UVOT follow-up due to proximity to the moon. The afterglow has a late p eak at least 1000 seconds after the BAT trigger, with a brightest-detected TESS datapoint at 2589.7 s post-trigger. The burst was not detected by Fermi-LAT, but was detected by Fermi-GBM without triggering, possibly due to the gradual nature of rising light curve. Using ground-based photometry, we estimate a photometric redshift of $z_mathrm{phot} = 3.29pm{0.40}$. Combined with the high-energy emission and optical peak time derived from TESS, estimates of the bulk Lorentz factor $Gamma_mathrm{BL}$ range from $90-133$. The burst is relatively bright, with a peak optical magnitude in ground-based follow-up of $R=15.1$ mag. Using published distributions of GRB afterglows and considering the TESS sensitivity and sampling, we estimate that TESS is likely to detect $sim1$ GRB afterglow per year above its magnitude limit.
Mergers of double neutron stars (DNSs) could lead to the formation of a long-lived massive remnant NS, which has been previously suggested to explain the AT 2017gfo kilonova emission in the famous GW170817 event. For an NS-affected kilonova, it is ex pected that a non-thermal emission component can be contributed by a pulsar wind nebula (PWN), which results from the interaction of the wind from the remnant NS with the preceding merger ejecta. Then, the discovery of such a non-thermal PWN emission can provide an evidence for the existence of the remnant NS. Similar to GRB 170817A, GRB 160821B is also one of the nearest short gamma-ray bursts (SGRBs). A candidate kilonova is widely believed to appear in the ultraviolet-optical-infrared afterglows of GRB 160821B. Here, by modeling the afterglow light curves and spectra of GRB 160821B, we find that the invoking of a non-thermal PWN emission can indeed be well consistent with the observational data. This may indicate that the formation of a stable massive NS could be not rare in the DNS merger events and, thus, the equation of state of the post-merger NSs should be stiff enough.
We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical T elescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approximately 100,000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 to 16,000 Angstrom). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.
Of all the well localized gamma-ray bursts, GRB 000911 has the longest duration (T_90 ~ 500 s), and ranks in the top 1% of BATSE bursts for fluence. Here, we report the discovery of the afterglow of this unique burst. In order to simultaneously fit o ur radio and optical observations, we are required to invoke a model involving an hard electron distribution, p ~ 1.5 and a jet-break time less than 1.5 day. A spectrum of the host galaxy taken 111 days after the burst reveals a single emission line, interpreted as [OII] at a redshift z = 1.0585, and a continuum break which we interpret as the Balmer limit at this redshift. Despite the long T_90, the afterglow of GRB 000911 is not unusual in any other way when compared to the set of afterglows studied to date. We conclude that the duration of the GRB plays little part in determining the physics of the afterglow.
We present broadband (gamma-ray, X-ray, near-infrared, optical, and radio) observations of the gamma-ray burst (GRB) 090709A and its afterglow in an effort to ascertain the origin of this high-energy transient. Previous analyses suggested that GRB 09 0709A exhibited quasi-periodic oscillations with a period of 8.06 s, a trait unknown in long-duration GRBs but typical of flares from soft gamma-ray repeaters. When properly accounting for the underlying shape of the power-density spectrum of GRB 090709A, we find no conclusive (> 3 sigma) evidence for the reported periodicity. In conjunction with the location of the transient (far from the Galactic plane and absent any nearby host galaxy in the local universe) and the evidence for extinction in excess of the Galactic value, we consider a magnetar origin relatively unlikely. A long-duration GRB, however, can account for the majority of the observed properties of this source. GRB 090709A is distinguished from other long-duration GRBs primarily by the large amount of obscuration from its host galaxy (A_K,obs >~ 2 mag).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا