ﻻ يوجد ملخص باللغة العربية
The abundance of a species population in an ecosystem is rarely stationary, often exhibiting large fluctuations over time. Using historical data on marine species, we show that the year-to-year fluctuations of population growth rate obey a well-defined double-exponential (Laplace) distribution. This striking regularity allows us to devise a stochastic model despite seemingly irregular variations in population abundances. The model identifies the effect of reduced growth at low population density as a key factor missed in current approaches of population variability analysis and without which extinction risks are severely underestimated. The model also allows us to separate the effect of demographic stochasticity and show that single-species growth rates are dominantly determined by stochasticity common to all species. This dominance---and the implications it has for interspecies correlations, including co-extinctions---emphasizes the need of ecosystem-level management approaches to reduce the extinction risk of the individual species themselves.
Behavioral homogeneity is often critical for the functioning of network systems of interacting entities. In power grids, whose stable operation requires generator frequencies to be synchronized--and thus homogeneous--across the network, previous work
We present a generic epidemic model with stochastic parameters, in which the dynamics self-organize to a critical state with suppressed exponential growth. More precisely, the dynamics evolve into a quasi-steady-state, where the effective reproductio
Dengue viral infections show unique infection patterns arising from its four serot- ypes, (DENV-1,2,3,4). Its effects range from simple fever in primary infections to potentially fatal secondary infections. We analytically and numerically analyse vir
We discuss several models of the dynamics of interacting populations. The models are constructed by nonlinear differential equations and have two sets of parameters: growth rates and coefficients of interaction between populations. We assume that the
The network of 5823 cities of Mexico with a population more than 5000 inhabitants is studied. Our analysis is focused to the spectral properties of the adjacency matrix, the small-world properties of the network, the distribution of the clustering co