ﻻ يوجد ملخص باللغة العربية
We present a generic epidemic model with stochastic parameters, in which the dynamics self-organize to a critical state with suppressed exponential growth. More precisely, the dynamics evolve into a quasi-steady-state, where the effective reproduction rate fluctuates close to the critical value one, as observed for different epidemics. The main assumptions underlying the model are that the rate at which each individual becomes infected changes stochastically in time with a heavy-tailed steady state. The critical regime is characterized by an extremely long duration of the epidemic. Its stability is analyzed both numerically and analytically.
We introduce a nonlinear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compa
It has been proposed that adaptation in complex systems is optimized at the critical boundary between ordered and disordered dynamical regimes. Here, we review models of evolving dynamical networks that lead to self-organization of network topology b
A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the l
In this paper we provide the derivation of a super compact pairwise model with only 4 equations in the context of describing susceptible-infected-susceptible (SIS) epidemic dynamics on heterogenous networks. The super compact model is based on a new
The Covid-19 pandemic is ongoing worldwide, and the damage it has caused is unprecedented. For prevention, South Korea has adopted a local quarantine strategy rather than a global lockdown. This approach not only minimizes economic damage, but it als