ﻻ يوجد ملخص باللغة العربية
We demonstrate optical performance monitoring of in-band optical signal to noise ratio (OSNR) and residual dispersion, at bit rates of 40Gb/s, 160Gb/s and 640Gb/s, using slow-light enhanced optical third harmonic generation (THG) in a compact (80 micron) dispersion engineered 2D silicon photonic crystal waveguide. We show that there is no intrinsic degradation in the enhancement of the signal processing at 640 Gb/s relative to that at 40Gb/s, and that this device should operate well above 1Tb/s. This work represents a record 16-fold increase in processing speed for a silicon device, and opens the door for slow light to play a key role in ultra-high bandwidth telecommunications systems.
Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conver
We report the observations of spontaneous Raman scattering in silicon photonic crystal waveguides. Continuous-wave measurements of Stokes emission for both wavelength and power dependence is reported in single line-defect waveguides in hexagonal latt
Hexagonally aligned, free-standing silicon nanowire (SiNW) arrays serve as photonic resonators which, as compared to a silicon (Si) thin film, do not only absorb more visible (VIS) and near-infrared (NIR) light, but also show an inherent photonic lig
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner-Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomen
We obtained exact solutions for the wave function and the Green function in the slow light pulse with the group velocity, consistent with the Fermi velocity in graphene.