ﻻ يوجد ملخص باللغة العربية
We geometrize six-dimensional pure $mathcal{N}=1$ Supergravity by means of an exact Courant algebroid, whose Severa class is defined through the Supergravity three-form $H$, equipped with a generalized metric and a compatible, torsion-free, generalized connection. The Supergravity equations of motion follow from the vanishing of the Ricci curvature of the generalized metric, satisfying a natural notion of self-duality. This way, we interpret the solutions of six-dimensional pure, $mathcal{N}=1$, Supergravity as generalized self-dual gravitational monopoles. For the D1-D5 black string solution, we explore the possibility of controlling space-time singularities by using $B$-field transformations.
General $mathcal{N}=(1,0)$ supergravity-matter systems in six dimensions may be described using one of the two fully fledged superspace formulations for conformal supergravity: (i) $mathsf{SU}(2)$ superspace; and (ii) conformal superspace. With motiv
We solve the Wess-Zumino consistency conditions of $mathcal{N}=1$ off-shell conformal supergravity in four dimensions and determine the general form of the superconformal anomalies for arbitrary $a$ and $c$ anomaly coefficients to leading non trivial
We propose Swampland constraints on consistent 5-dimensional ${cal N}=1$ supergravity theories. We focus on a special class of BPS magnetic monopole strings which arise in gravitational theories. The central charges and the levels of current algebras
We give a classification of fully supersymmetric chiral ${cal N}=(8,0)$ AdS$_3$ vacua in general three-dimensional half-maximal gauged supergravities coupled to matter. These theories exhibit a wealth of supersymmetric vacua with background isometrie
We describe the supersymmetric completion of several curvature-squared invariants for ${cal N}=(1,0)$ supergravity in six dimensions. The construction of the invariants is based on a close interplay between superconformal tensor calculus and recently