ﻻ يوجد ملخص باللغة العربية
There has been considerable progress in the design and construction of quantum annealing devices. However, a conclusive detection of quantum speedup over traditional silicon-based machines remains elusive, despite multiple careful studies. In this work we outline strategies to design hard tunable benchmark instances based on insights from the study of spin glasses - the archetypal random benchmark problem for novel algorithms and optimization devices. We propose to complement head-to-head scaling studies that compare quantum annealing machines to state-of-the-art classical codes with an approach that compares the performance of different algorithms and/or computing architectures on different classes of computationally hard tunable spin-glass instances. The advantage of such an approach lies in having to only compare the performance hit felt by a given algorithm and/or architecture when the instance complexity is increased. Furthermore, we propose a methodology that might not directly translate into the detection of quantum speedup, but might elucidate whether quantum annealing has a `quantum advantage over corresponding classical algorithms like simulated annealing. Our results on a 496 qubit D-Wave Two quantum annealing device are compared to recently-used state-of-the-art thermal simulated annealing codes.
DNS has always been criticized for its inherent design flaws, making the system vulnerable to kinds of attacks. Besides, DNS domain names are not fully controlled by the users, which can be easily taken down by the authorities and registrars. Since b
We examine three approaches to the problem of source classification in catalogues. Our goal is to determine the confidence with which the elements in these catalogues can be distinguished in populations on the basis of their spectral energy distribut
The Good is Blondie, a wandering gunman with a strong personal sense of honor. The Bad is Angel Eyes, a sadistic hitman who always hits his mark. The Ugly is Tuco, a Mexican bandit whos always only looking out for himself. Against the backdrop of the
We address a non-unique parameter fitting problem in the context of material science. In particular, we propose to resolve ambiguities in parameter space by augmenting a black-box artificial neural network (ANN) model with two different levels of exp
Ethereum smart contracts are distributed programs running on top of the Ethereum blockchain. Since program flaws can cause significant monetary losses and can hardly be fixed due to the immutable nature of the blockchain, there is a strong need of au