ترغب بنشر مسار تعليمي؟ اضغط هنا

The Good, the Bad and the Ugly: Pitfalls and Best Practices in Automated Sound Static Analysis of Ethereum Smart Contracts

185   0   0.0 ( 0 )
 نشر من قبل Markus Scherer
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ethereum smart contracts are distributed programs running on top of the Ethereum blockchain. Since program flaws can cause significant monetary losses and can hardly be fixed due to the immutable nature of the blockchain, there is a strong need of automated analysis tools which provide formal security guarantees. Designing such analyzers, however, proved to be challenging and error-prone. We review the existing approaches to automated, sound, static analysis of Ethereum smart contracts and highlight prevalent issues in the state of the art. Finally, we overview eThor, a recent static analysis tool that we developed following a principled design and implementation approach based on rigorous semantic foundations to overcome the problems of past works.



قيم البحث

اقرأ أيضاً

DNS has always been criticized for its inherent design flaws, making the system vulnerable to kinds of attacks. Besides, DNS domain names are not fully controlled by the users, which can be easily taken down by the authorities and registrars. Since b lockchain has its unique properties like immutability and decentralization, it seems to be promising to build a decentralized name service on blockchain. Ethereum Name Service (ENS), as a novel name service built atop Etheruem, has received great attention from the community. Yet, no existing work has systematically studied this emerging system, especially the security issues and misbehaviors in ENS. To fill the void, we present the first large-scale study of ENS by collecting and analyzing millions of event logs related to ENS. We characterize the ENS system from a number of perspectives. Our findings suggest that ENS is showing gradually popularity during its four years evolution, mainly due to its distributed and open nature that ENS domain names can be set to any kinds of records, even censored and malicious contents. We have identified several security issues and misbehaviors including traditional DNS security issues and new issues introduced by ENS smart contracts. Attackers are abusing the system with thousands of squatting ENS names, a number of scam blockchain addresses and malicious websites, etc. Our exploration suggests that our community should invest more effort into the detection and mitigation of issues in Blockchain-based Name Services towards building an open and trustworthy name service.
Ethereum has emerged as the most popular smart contract development platform, with hundreds of thousands of contracts stored on the blockchain and covering a variety of application scenarios, such as auctions, trading platforms, and so on. Given thei r financial nature, security vulnerabilities may lead to catastrophic consequences and, even worse, they can be hardly fixed as data stored on the blockchain, including the smart contract code itself, are immutable. An automated security analysis of these contracts is thus of utmost interest, but at the same time technically challenging for a variety of reasons, such as the specific transaction-oriented programming mechanisms, which feature a subtle semantics, and the fact that the blockchain data which the contract under analysis interacts with, including the code of callers and callees, are not statically known. In this work, we present eThor, the first sound and automated static analyzer for EVM bytecode, which is based on an abstraction of the EVM bytecode semantics based on Horn clauses. In particular, our static analysis supports reachability properties, which we show to be sufficient for capturing interesting security properties for smart contracts (e.g., single-entrancy) as well as contract-specific functional properties. Our analysis is proven sound against a complete semantics of EVM bytecode and an experimental large-scale evaluation on real-world contracts demonstrates that eThor is practical and outperforms the state-of-the-art static analyzers: specifically, eThor is the only one to provide soundness guarantees, terminates on 95% of a representative set of real-world contracts, and achieves an F-measure (which combines sensitivity and specificity) of 89%.
Recent attacks exploiting errors in smart contract code had devastating consequences thereby questioning the benefits of this technology. It is currently highly challenging to fix errors and deploy a patched contract in time. Instant patching is espe cially important since smart contracts are always online due to the distributed nature of blockchain systems. They also manage considerable amounts of assets, which are at risk and often beyond recovery after an attack. Existing solutions to upgrade smart contracts depend on manual and error-prone processes. This paper presents a framework, called EVMPatch, to instantly and automatically patch faulty smart contracts. EVMPatch features a bytecode rewriting engine for the popular Ethereum blockchain, and transparently/automatically rewrites common off-the-shelf contracts to upgradable contracts. The proof-of-concept implementation of EVMPatch automatically hardens smart contracts that are vulnerable to integer over/underflows and access control errors, but can be easily extended to cover more bug classes. Our extensive evaluation on 14,000 real-world (vulnerable) contracts demonstrate that our approach successfully blocks attack transactions launched on these contracts, while keeping the intended functionality of the contract intact. We perform a study with experienced software developers, showing that EVMPatch is practical, and reduces the time for converting a given Solidity smart contract to an upgradable contract by 97.6 %, while ensuring functional equivalence to the original contract.
Smart contracts are programs running on cryptocurrency (e.g., Ethereum) blockchains, whose popularity stem from the possibility to perform financial transactions, such as payments and auctions, in a distributed environment without need for any truste d third party. Given their financial nature, bugs or vulnerabilities in these programs may lead to catastrophic consequences, as witnessed by recent attacks. Unfortunately, programming smart contracts is a delicate task that requires strong expertise: Ethereum smart contracts are written in Solidity, a dedicated language resembling JavaScript, and shipped over the blockchain in the EVM bytecode format. In order to rigorously verify the security of smart contracts, it is of paramount importance to formalize their semantics as well as the security properties of interest, in particular at the level of the bytecode being executed. In this paper, we present the first complete small-step semantics of EVM bytecode, which we formalize in the F* proof assistant, obtaining executable code that we successfully validate against the official Ethereum test suite. Furthermore, we formally define for the first time a number of central security properties for smart contracts, such as call integrity, atomicity, and independence from miner controlled parameters. This formalization relies on a combination of hyper- and safety properties. Along this work, we identified various mistakes and imprecisions in existing semantics and verification tools for Ethereum smart contracts, thereby demonstrating once more the importance of rigorous semantic foundations for the design of security verification techniques.
112 - Lu Liu , Lili Wei , Wuqi Zhang 2021
Smart contracts are programs running on blockchain to execute transactions. When input constraints or security properties are violated at runtime, the transaction being executed by a smart contract needs to be reverted to avoid undesirable consequenc es. On Ethereum, the most popular blockchain that supports smart contracts, developers can choose among three transaction-reverting statements (i.e., require, if...revert, and if...throw) to handle anomalous transactions. While these transaction-reverting statements are vital for preventing smart contracts from exhibiting abnormal behaviors or suffering malicious attacks, there is limited understanding of how they are used in practice. In this work, we perform the first empirical study to characterize transaction-reverting statements in Ethereum smart contracts. We measured the prevalence of these statements in 3,866 verified smart contracts from popular dapps and built a taxonomy of their purposes via manually analyzing 557 transaction-reverting statements. We also compared template contracts and their corresponding custom contracts to understand how developers customize the use of transaction-reverting statements. Finally, we analyzed the security impact of transaction-reverting statements by removing them from smart contracts and comparing the mutated contracts against the original ones. Our study led to important findings, which can shed light on further research in the broad area of smart contract quality assurance and provide practical guidance to smart contract developers on the appropriate use of transaction-reverting statements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا