ﻻ يوجد ملخص باللغة العربية
We prove that amongst all real quadratic fields and all spaces of Hilbert modular forms of full level and of weight $2$ or greater, the product of two Hecke eigenforms is not a Hecke eigenform except for finitely many real quadratic fields and finitely many weights. We show that for $mathbb Q(sqrt 5)$ there are exactly two such identities.
Let $F$ be a totally real field and $p$ be an odd prime which splits completely in $F$. We prove that the eigenvariety associated to a definite quaternion algebra over $F$ satisfies the following property: over a boundary annulus of the weight space,
Generalizing a result of cite{Z1991, CPZ} about elliptic modular forms, we give a closed formula for the sum of all Hilbert Hecke eigenforms over a totally real number field with strict class number $1$, multiplied by their period polynomials, as a single product of the Kronecker series.
Let $F$ be a totally real field in which $p$ is unramified. We prove that, if a cuspidal overconvergent Hilbert cuspidal form has small slopes under $U_p$-operators, then it is classical. Our method follows the original cohomological approach of Cole
This paper investigates the relations between modular graph forms, which are generalizations of the modular graph functions that were introduced in earlier papers motivated by the structure of the low energy expansion of genus-one Type II superstring
In this note, we prove that there exists a classical Hilbert modular cusp form over Q(sqrt{5}) of partial weight one which does not arise from the induction of a Grossencharacter from a CM extension of Q(sqrt{5}).