Due to potential level of energy intensity 178m2Hf is an extremely interesting isomer. One possible way to produce this isomer is irradiation of nat-Ta or nat-W samples with high energy protons. Irradiation of nat-Ta and nat-W samples performed for other purposes provides an opportunity to study the corresponding reactions. This paper pre-sents the 178m2Hf independent production cross sections for both targets measured by the gamma-ray spectrometry method. The reaction excitation functions have been obtained for the proton energies from 40 up to 2600 MeV. The experimental results were compared with calculations by vario
178m2-Hf is an extremely interesting isomeric state due to its potential energy capacity level. One possible way to obtain it is by irradiation of a nat-Ta sample with a high-current proton accelerator. Up to now, there was no information in the inte
rnational experimental nuclear data base (EXFOR) for this reaction. Irradiations of nat-Ta samples performed for other purposes provide an opportunity to address this question. This paper presents the 172m2-Hf independent production cross-sections determined by gamma-ray spectrometry. The nat-Ta(p,x)172m2-Hf excitation function is studied in the 20-3500 MeV energy range. Comparisons with results by several nuclear models (ISABEL, Bertini, INCL4.5+ABLA07, PHITS, CASCADE07, and CEM03.02) used as event-generators in modern transport codes are also reported. However, since such models are generally not able to separately predict ground and isomeric states of reaction products, only 178-Hf independent and cumulative cross-section data are compared.
Excitation functions for the production of the 181,182m,182g,183,184g,186Re and 183,184Ta radionuclides from proton bombardment on natural tungsten were measured using the stacked-foil activation technique for the proton energies up to 40 MeV. A new
data set has been given for the formation of the investigated radionuclides. Results are in good agreement with the earlier reported experimental data and theoretical calculations based on the ALICE-IPPE code. The thick target integral yields were also deduced from the measured excitation functions. The deduced yield values were compared with the directly measured thick target yield (TTY), and found acceptable agreement. The investigated radionuclide 186Re has remarkable applications in the field of nuclear medicine, whereas the data of 183,184gRe and 183Ta have potential applications in thin layer activation analysis and biomedical tracer studies, respectively.
Excitation functions were measured for the $^{55}$Mn(n,2n)$^{54}$Mn, $^{55}$Mn(n,$alpha$)$^{52}$V, $^{63}$Cu(n,$alpha$)$^{60}$Co, $^{65}$Cu(n,2n)$^{64}$Cu, and $^{65}$Cu(n,p)$^{65}$Ni reactions from 13.47 to 14.83 MeV. The experimental cross sections
are compared with the results of calculations including all activation channels for the stable isotopes of Mn and Cu, for neutron incident energies up to 50 MeV. Within the energy range up to 20 MeV the model calculations are most sensitive to the parameters related to nuclei in the early stages of the reaction, while the model assumptions are better established by analysis of the data in the energy range 20-40 MeV. While the present analysis has taken advantage of both a new set of accurate measured cross sections around 14 MeV and the larger data basis fortunately available between 20 and 40 MeV for the Mn and Cu isotopes, the need of additional measurements below as well as above 40 MeV is pointed out. Keywords: 55Mn, 63,65Cu, E$leq$40 MeV, Neutron activation cross section measurements, Nuclear reactions, Model calculations, Manganese, Copper
The MEDLEY setup based at The Svedberg Laboratory (TSL), Uppsala, Sweden has previously been used to measure double-differential cross-sections for elastic nd scattering, as well as light ion production reactions for various nuclei in the interaction
with neutrons around 95 MeV. When moved to the new beam line, the first experimental campaign was on light-ion production from Ca at 94 MeV in February 2005. These data sets have been analyzed for proton production in forward and backward angles. The Delta E - Delta E - E technique have been used to identify protons, and a cutoff as low as 2.5 MeV is achieved. Suppression of events induced by neutrons in the low-energy tail of the neutron field is achieved by time-of-flight techniques. The data are normalized relative to elastic np scattering measured in the 20-degree telescope. Results from an accepted neutron spectrum are presented and some methods to correct for events from low energy neutrons are presented and evaluated. The data are compared with calculations using the nuclear code TALYS. It was found that TALYS systematically overestimates the compound part, and underestimates the pre-equilibrium part of the cross-section.
New experimental data for the inclusive reactions (p,xp) and (p,xd) on isotopes of the nuclei $^{90,92}$Zr and $^{92}$Mo, have been measured at E$_{p}$=30.3 MeV, which has not been investigated in detail so far. We show the extension of the pre-equil
ibrium reactions to this energy region and interpret the results of these experiments. Moreover, we display the mechanism of the reaction and the level of energy-dependence. The adequacy of the theoretical models in explaining the measured experimental data is also discussed. In our theoretical analysis, the contributions of multi-step direct and compound processes in the formation of cross-sections are determined and we assert that the traditional frameworks are valid for the description of the experimental data.
Yu. E. Titarenko
,V. F. Batyaev
,K.V. Pavlov
.
(2015)
.
"Excitation functions of the nat-Ta(p,x)178m2Hf and nat-W(p,x)178m2Hf reactions at energies up to 2600 MeV"
.
Stepan G. Mashnik
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا