ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast-neutron induced pre-equilibrium reactions on 55Mn and 63,65Cu at energies up to 40 MeV

324   0   0.0 ( 0 )
 نشر من قبل Vlad Avrigeanu
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف M. Avrigeanu




اسأل ChatGPT حول البحث

Excitation functions were measured for the $^{55}$Mn(n,2n)$^{54}$Mn, $^{55}$Mn(n,$alpha$)$^{52}$V, $^{63}$Cu(n,$alpha$)$^{60}$Co, $^{65}$Cu(n,2n)$^{64}$Cu, and $^{65}$Cu(n,p)$^{65}$Ni reactions from 13.47 to 14.83 MeV. The experimental cross sections are compared with the results of calculations including all activation channels for the stable isotopes of Mn and Cu, for neutron incident energies up to 50 MeV. Within the energy range up to 20 MeV the model calculations are most sensitive to the parameters related to nuclei in the early stages of the reaction, while the model assumptions are better established by analysis of the data in the energy range 20-40 MeV. While the present analysis has taken advantage of both a new set of accurate measured cross sections around 14 MeV and the larger data basis fortunately available between 20 and 40 MeV for the Mn and Cu isotopes, the need of additional measurements below as well as above 40 MeV is pointed out. Keywords: 55Mn, 63,65Cu, E$leq$40 MeV, Neutron activation cross section measurements, Nuclear reactions, Model calculations, Manganese, Copper



قيم البحث

اقرأ أيضاً

Excitation functions for the production of the 181,182m,182g,183,184g,186Re and 183,184Ta radionuclides from proton bombardment on natural tungsten were measured using the stacked-foil activation technique for the proton energies up to 40 MeV. A new data set has been given for the formation of the investigated radionuclides. Results are in good agreement with the earlier reported experimental data and theoretical calculations based on the ALICE-IPPE code. The thick target integral yields were also deduced from the measured excitation functions. The deduced yield values were compared with the directly measured thick target yield (TTY), and found acceptable agreement. The investigated radionuclide 186Re has remarkable applications in the field of nuclear medicine, whereas the data of 183,184gRe and 183Ta have potential applications in thin layer activation analysis and biomedical tracer studies, respectively.
Spectra of outgoing neutrons and protons from the 6Li+55Mn reaction and protons from the a+57Fe reaction have been measured with beams of 15 MeV 6Li ions and 30 MeV alpha-particles. These reactions proceed through the same 61Ni nucleus at the same ex citation energy, thus allowing the difference in reaction mechanism to be studied. It is shown that spectra from the first reaction measured at backward angles are due to emission from a traditional compound nucleus reaction, in which the intermediate nucleus has reached statistical equilibrium; the spectra from the second reaction contain a significant fraction of pre-equilibrium emission at all angles. Level density pa- rameters of the residual nucleus 60Co have been obtained from the first reaction. Both emission spectra and angular distributions have been measured for the second reaction. It was found that the pre-equilibrium component exhibits a forward-peaked angular distribution, as expected, but with a steeper slope than predicted and with an unusual slight rise at angles above 120deg. The backward- angle rise is explained qualitatively by the dominance of the multi-step compound mechanism at backward angles.
Purpose: Accurate new measurements of low-energy deuteron-induced reaction cross sections for natural Cr target can enhance the related database and the opportunity for an unitary and consistent account of the involved reaction mechanisms. Methods: T he activation cross sections of $^{51,52,54}$Mn, $^{51}$Cr, and $^{48}$V nuclei for deuterons incident on natural Cr at energies up to 20 MeV, were measured by the stacked-foil technique and high resolution gamma spectrometry using U-120M cyclotron of the Center of Accelerators and Nuclear Analytical Methods (CANAM) of the Nuclear Physics Institute of the Czech Academy of Sciences (NPI CAS). They as well as formerly available data for deuteron interactions with Cr isotopes up to 60 MeV are the object of an extended analysis of all processes from elastic scattering until the evaporation from fully equilibrated compound system, but with a particular attention given to the BU and DR mechanisms. Results: The new measured activation excitation functions proved essential for the enrichment of the deuteron database, while the theoretical analysis of all available data strengthens for the first time their consistent account provided that (i) a suitable BU and DR assessment is completed by (ii) the assumption of PE and CN contributions corrected for decrease of the total-reaction cross section due to the leakage of the initial deuteron flux towards BU and DR processes. Conclusions: The suitable description of nuclear mechanisms involved within deuteron-induced reactions on chromium, taking into account especially the BU and DR direct processes, is validated by an overall agreement of the calculated and measured cross sections including particularly the new experimental data at low energies.
Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed usi ng two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.
159 - A. Guertin 2005
Double differential cross sections (DDCS) for light charged particles (proton, deuteron, triton, 3He, alpha) and neutrons produced by a proton beam impinging on a 238U target at 62.9 MeV were measured at the CYCLONE facility in Louvain-la-Neuve (Belg ium). These measurements have been performed using two independent experimental set-ups ensuring neutron (DeMoN counters) and light charged particles (Si-Si-CsI telescopes) detection. The charged particle data were measured at 11 different angular positions from 25 degrees to 140 degrees allowing the determination of angle differential, energy differential and total production cross sections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا