ﻻ يوجد ملخص باللغة العربية
We present a new numerical tool for solving the special relativistic ideal MHD equations that is based on the combination of the following three key features: (i) a one-step ADER discontinuous Galerkin (DG) scheme that allows for an arbitrary order of accuracy in both space and time, (ii) an a posteriori subcell finite volume limiter that is activated to avoid spurious oscillations at discontinuities without destroying the natural subcell resolution capabilities of the DG finite element framework and finally (iii) a space-time adaptive mesh refinement (AMR) framework with time-accurate local time-stepping. The divergence-free character of the magnetic field is instead taken into account through the so-called divergence-cleaning approach. The convergence of the new scheme is verified up to 5th order in space and time and the results for a set of significant numerical tests including shock tube problems, the RMHD rotor and blast wave problems, as well as the Orszag-Tang vortex system are shown. We also consider a simple case of the relativistic Kelvin-Helmholtz instability with a magnetic field, emphasizing the potential of the new method for studying turbulent RMHD flows. We discuss the advantages of our new approach when the equations of relativistic MHD need to be solved with high accuracy within various astrophysical systems.
In this paper we present a novel arbitrary high order accurate discontinuous Galerkin (DG) finite element method on space-time adaptive Cartesian meshes (AMR) for hyperbolic conservation laws in multiple space dimensions, using a high order aposterio
In this paper we consider a level set reinitialization technique based on a high-order, local discontinuous Galerkin method on unstructured triangular meshes. A finite volume based subcell stabilization is used to improve the nonlinear stability of t
In this paper, we generalize the compact subcell weighted essentially non oscillatory (CSWENO) limiting strategy for Runge-Kutta discontinuous Galerkin method developed recently by us in 2021 for structured meshes to unstructured triangular meshes. T
A new numerical code, called SFUMATO, for solving self-gravitational magnetohydrodynamics (MHD) problems using adaptive mesh refinement (AMR) is presented. A block-structured grid is adopted as the grid of the AMR hierarchy. The total variation dimin
We have carried out numerical simulations of strongly gravitating systems based on the Einstein equations coupled to the relativistic hydrodynamic equations using adaptive mesh refinement (AMR) techniques. We show AMR simulations of NS binary inspira