ﻻ يوجد ملخص باللغة العربية
We numerically and experimentally investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) achieving perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating and placing it near either a metallic or a dielectric mirror.
A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able t
We demonstrate an efficient double-layer light absorber by exciting plasmonic phase resonances. We show that the addition of grooves can cause mode splitting of the plasmonic waveguide cavity modes and all the new resonant modes exhibit large absorpt
Coherent perfect absorption (CPA), also known as time-reversed laser, is a wave phenomenon resulting from the reciprocity of destructive interference of transmitted and reflected waves. In this work we consider quasi one-dimensional lattice networks
In this paper we report phase modulation obtained by inducing a capacitive charge on graphene layers embedded in the core of a waveguide. There is a biasing regime in which graphene absorption is negligible but large index variations can be achieved
We show that anisotropic planar anti-guiding waveguide structures with two radiation channels towards the surrounding cladding materials can support unidirectional guided resonances (UGRs), where radiation is cancelled in one of the radiation channel