ﻻ يوجد ملخص باللغة العربية
The simulation of the neutron background for Phase II of the SIMPLE direct dark matter search experiment is fully reported with various improvements relative to previous estimates. The model employs the Monte Carlo MCNP neutron transport code, using as input a realistic geometry description, measured radioassays and material compositions, and tabulated (alpha,n) yields and spectra. Developments include the accounting of recoil energy distributions, consideration of additional reactions and materials and examination of the relevant (alpha,n) data. A thorough analysis of the simulation results is performed that addresses an increased number of non-statistical uncertainties. The referred omissions are seen to provide a net increase of 13$%$ in the previously-reported background estimates whereas the non-statistical uncertainty rises to 25$%$. The final estimated recoil event rate is 0.372 $pm$ 0.002 (stat.) $pm$ 0.097 (non-stat.) evt/kgd resulting in insignificant changes over the results of the experiment.
The combined measurement of dark matter interactions with different superheated liquids has recently been suggested as a cross-correlation technique in identifying WIMP candidates. We describe the fabrication of high concentration superheated droplet
Phase II of SIMPLE (Superheated Instrument for Massive ParticLe Experiments) searched for astroparticle dark matter using superheated liquid C$_{2}$ClF$_{5}$ droplet detectors. Each droplet generally requires an energy deposition with linear energy t
We report results of a 14.1 kgd measurement with 15 superheated droplet detectors of total active mass 0.208 kg, comprising the first stage of a 30 kgd Phase II experiment. In combination with the results of the neutron-spin sensitive XENON10 experim
Inelastic neutron scattering instruments require very low background; therefore the proper shielding for suppressing the scattered neutron background, both from elastic and inelastic scattering is essential. The detailed understanding of the backgrou
The PICASSO project is a cold dark matter (CDM) search experiment relying on the superheated droplet technique. The detectors use superheated freon liquid droplets (active material) dispersed and trapped in a polymerized gel. This detection technique