ﻻ يوجد ملخص باللغة العربية
The combined measurement of dark matter interactions with different superheated liquids has recently been suggested as a cross-correlation technique in identifying WIMP candidates. We describe the fabrication of high concentration superheated droplet detectors based on the light nuclei liquids C3F8, C4F8, C4F10 and CCl2F2, and investigation of their irradiation response with respect to C2ClF5. The results are discussed in terms of the basic physics of superheated liquid response to particle interactions, as well as the necessary detector qualifications for application in dark matter search investigations. The possibility of heavier nuclei SDDs is explored using the light nuclei results as a basis, with CF3I provided as an example.
The simulation of the neutron background for Phase II of the SIMPLE direct dark matter search experiment is fully reported with various improvements relative to previous estimates. The model employs the Monte Carlo MCNP neutron transport code, using
The PICASSO project is a cold dark matter (CDM) search experiment relying on the superheated droplet technique. The detectors use superheated freon liquid droplets (active material) dispersed and trapped in a polymerized gel. This detection technique
We report new results obtained in calibrations of superheated liquid droplet detectors used in dark matter searches with different radiation sources (n,$alpha$,$gamma$). In particular, detectors were spiked with alpha-emitters located inside and outs
The PICASSO collaboration observed for the first time a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids. This new discovery offers the possibility of improved back
Large, high-purity, germanium (HPGe) detectors are needed for neutrinoless double-beta decay and dark matter experiments. Currently, large (> 4 inches in diameter) HPGe crystals can be grown at the University of South Dakota (USD). We verify that the