ﻻ يوجد ملخص باللغة العربية
We study the nuclear ground-state properties by using the unitary-model-operator approach (UMOA). Recently, the particle-basis formalism has been introduced in the UMOA and enables us to employ the charge-dependent nucleon-nucleon interaction. We evaluate the ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni with the charge-dependent Bonn potential. The ground-state energy is dominated by the contributions from the one- and two-body cluster terms, while, for the radius, the one-particle-one-hole excitations are more important than the two-particle-two-hole excitations. The calculated results reproduce the trend of experimental data of the saturation property for finite nuclei.
Inclusive as well as exclusive energy spectra of the light charged particles emitted in the $^{28}Si(E_{lab}=112.6 MeV) + ^{28}Si,^{12}C$ reactions have been measured at the Strasbourg VIVITRON facility in the angular range 15^0 - 150^0, using the IC
The ground-state energies and radii for $^{4}$He, $^{16}$O, and $^{40}$Ca are calculated with the unitary-model-operator approach (UMOA). In the present study, we employ the similarity renormalization group (SRG) evolved nucleon-nucleon ($NN$) and th
The reformulated coupled-cluster method (CCM), in which average many-body potentials are introduced, provides a useful framework to organize numerous terms appearing in CCM equations, which enables us to clarify the structure of the CCM theory and ph
In the earlier unitary-model-operator approach (UMOA), one-body correlations have been taken into account approximately by the diagonalization of unitary-transformed Hamiltonians in the $0p0h$ and $1p1h$ space. With this prescription, the dependence
We demonstrate the capability of coupled-cluster theory to compute the Coulomb sum rule for the $^4$He and $^{16}$O nuclei using interactions from chiral effective field theory. We perform several checks, including a few-body benchmark for $^4$He. We