ﻻ يوجد ملخص باللغة العربية
We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 days and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-day segments of the Suns total irradiance variations at different points in the Suns activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, auto-correlation function, and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that the `overall period is well recovered for stars exhibiting low and moderate activity levels. Most teams reported values within 10% of the true value in 70% of the cases. There was, however, little correlation between the reported and simulated values of the differential rotation shear, suggesting that differential rotation studies based on full-disk light curves alone need to be treated with caution, at least for solar-type stars. The simulated light curves and associated parameters are available online for the community to test their own methods.
Context: Detailed oscillation spectra comprising individual frequencies for numerous solar-type stars and red giants are or will become available. These data can lead to a precise characterisation of stars. Aims: Our goal is to test and compare dif
We report on initial results from the first phase of Exercise 1 of the asteroFLAG hare and hounds. The asteroFLAG group is helping to prepare for the asteroseismology component of NASAs Kepler mission, and the first phase of Exercise 1 is concerned w
We used a convolutional neural network to infer stellar rotation periods from a set of synthetic light curves simulated with realistic spot evolution patterns. We convolved these simulated light curves with real TESS light curves containing minimal i
A large fraction of cool, low-mass stars exhibit brightness fluctuations that arise from a combination of convective granulation, acoustic oscillations, magnetic activity, and stellar rotation. Much of the short-timescale variability takes the form o
The Wavelength-Oriented Microwave Background Analysis Team (WOMBAT) is constructing microwave skymaps which will be more realistic than previous simulations. Our foreground models represent a considerable improvement: where spatial templates are avai