A search for hidden photon cold dark matter (HP CDM) using a new technique with a dish antenna is reported. From the result of the measurement, we found no evidence for the existence of HP CDM and set an upper limit on the photon-HP mixing parameter $chi$ of $sim 6times 10^{-12}$ for the hidden photon mass $m_gamma = 3.1 pm 1.2$ eV.
We report on a search for hidden photon cold dark matter (HP CDM) using a novel technique with a dish antenna. We constructed two independent apparatus: one is aiming at the detection of the HP with a mass of $sim,rm{eV}$ which employs optical instru
ments, and the other is for a mass of $sim5times10^{-5}, rm{eV}$ utilizing a commercially available parabolic antenna facing on a plane reflector. From the result of the measurements, we found no evidence for the existence of HP CDM and set upper limits on the photon-HP mixing parameter $chi$.
We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg-days was analyzed for WIMPs with mass < 30 GeV/c2, with the signal region blinded. Eleven events
were observed after unblinding. We set an upper limit on the spin-independent WIMP-nucleon cross section of 1.2e-42 cm2 at 8 GeV/c2. This result is in tension with WIMP interpretations of recent experiments and probes new parameter space for WIMP-nucleon scattering for WIMP masses < 6 GeV/c2.
We search for hidden-photon cold dark matter (HP-CDM) using a spectroscopic system in a K-band frequency range. Our system comprises a planar metal plate and cryogenic receiver. This is the first time a cryogenic receiver has been used in the search
for HP-CDM. Such use helps reduce thermal noise. We recorded data for 9.3 hours using an effective aperture area of 14.8 cm$^2$. No signal was found in the data. We set upper limits for the parameter of mixing between the photon and HP-CDM in the mass range from 115.79 to 115.85 $mu$eV, $chi < 1.8$-$4.3 times 10^{-10}$, at a 95% confidence level. This is the most stringent upper limit obtained to date in the considered mass range.
We report on the first results from a new dish antenna search for hidden photon dark matter (HPDM) in the meV mass region. A double mirror system composed of a plane and a parabolic mirror is designed to convert HPDMs into photons focused on a receiv
er. In this phase 1 experiment we obtain an upper limit on the photon-HP kinetic mixing $chi lesssim 10^{-8}$ for the mass range of $0.67-0.92,{rm meV}$ using conventional mm-wave technology with a room-temperature receiver and a small-sized mirror system.
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sens
itivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultra-low-noise SQUID amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.