ترغب بنشر مسار تعليمي؟ اضغط هنا

First results from a hidden photon dark matter search in the meV sector using a plane-parabolic mirror system

116   0   0.0 ( 0 )
 نشر من قبل Stefan Paul Nikolas Knirck
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first results from a new dish antenna search for hidden photon dark matter (HPDM) in the meV mass region. A double mirror system composed of a plane and a parabolic mirror is designed to convert HPDMs into photons focused on a receiver. In this phase 1 experiment we obtain an upper limit on the photon-HP kinetic mixing $chi lesssim 10^{-8}$ for the mass range of $0.67-0.92,{rm meV}$ using conventional mm-wave technology with a room-temperature receiver and a small-sized mirror system.



قيم البحث

اقرأ أيضاً

We search for hidden-photon cold dark matter (HP-CDM) using a spectroscopic system in a K-band frequency range. Our system comprises a planar metal plate and cryogenic receiver. This is the first time a cryogenic receiver has been used in the search for HP-CDM. Such use helps reduce thermal noise. We recorded data for 9.3 hours using an effective aperture area of 14.8 cm$^2$. No signal was found in the data. We set upper limits for the parameter of mixing between the photon and HP-CDM in the mass range from 115.79 to 115.85 $mu$eV, $chi < 1.8$-$4.3 times 10^{-10}$, at a 95% confidence level. This is the most stringent upper limit obtained to date in the considered mass range.
If dark matter consists of hidden-sector photons which kinetically mix with regular photons, a tiny oscillating electric-field component is present wherever we have dark matter. In the surface of conducting materials this induces a small probability to emit single photons almost perpendicular to the surface, with the corresponding photon frequency matching the mass of the hidden photons. We report on a construction of an experimental setup with a large ~14 m2 spherical metallic mirror that will allow for searches of hidden-photon dark matter in the eV and sub-eV range by application of different electromagnetic radiation detectors. We discuss sensitivity and accessible regions in the dark matter parameter space.
We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China Jinping Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle candidate event was found. This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results. The minimum upper limit, $3.7times10^{-44}$,cm$^2$, for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49,GeV/c$^2$ at 90% confidence level.
The understanding of the origin of dark matter has great importance for cosmology and particle physics. Several interesting extensions of the standard model dealing with solution of this problem motivate the concept of hidden sectors consisting of SU (3)xSU(2)_LxU(1)_Y singlet fields. Among these models, the mirror matter model is certainly one of the most interesting. The model explains the origin of parity violation in weak interactions, it could also explain the baryon asymmetry of the Universe and provide a natural ground for the explanation of dark matter. The mirror matter could have a portal to our world through photon-mirror photon mixing (epsilon). This mixing would lead to orthopositronium (o-Ps) to mirror orthopositronium oscillations, the experimental signature of which is the apparently invisible decay of o-Ps. In this paper, we describe an experiment to search for the decay o-Ps -> invisible in vacuum by using a pulsed slow positron beam and a massive 4pi BGO crystal calorimeter. The developed high efficiency positron tagging system, the low calorimeter energy threshold and high hermiticity allow the expected sensitivity in mixing strength to be epsilon about 10^-9, which is more than one order of magnitude below the current Big Bang Nucleosynthesis limit and in a region of parameter space of great theoretical and phenomenological interest. The vacuum experiment with such sensitivity is particularly timely in light of the recent DAMA/LIBRA observations of the annual modulation signal consistent with a mirror type dark matter interpretation.
We propose using the storage ring EDM method to search for the axion dark matter induced EDM oscillation in nucleons. The method uses a combination of B and E-fields to produce a resonance between the $g-2$ spin precession frequency and the backgroun d axion field oscillation to greatly enhance sensitivity to it. An axion frequency range from $10^{-9}$ Hz to 100 MHz can in principle be scanned with high sensitivity, corresponding to an $f_a$ range of $10^{13} $ GeV $leq f_a leq 10^{30}$ GeV, the breakdown scale of the global symmetry generating the axion or axion like particles (ALPs).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا