ﻻ يوجد ملخص باللغة العربية
Integral forms provide a natural and powerful tool for the construction of supergravity actions. They are generalizations of usual differential forms and are needed for a consistent theory of integration on supermanifolds. The group geometrical approach to supergravity and its variational principle are reformulated and clarified in this language. Central in our analysis is the Poincare dual of a bosonic manifold embedded into a supermanifold. Finally, using integral forms we provide a proof of Gates so-called Ectoplasmic Integration Theorem, relating superfield actions to component actions.
We present few types of integral transforms and integral representations that are very useful for extending to supergeometry many familiar concepts of differential geometry. Among them we discuss the construction of the super Hodge dual, the integral
The superform construction of supergravity actions, christened the ectoplasm method, is based on the use of a closed super d-form in the case of d space-time dimensions. In known examples, such superforms are obtained by iteratively solving nontrivia
We present off-shell N=2 supergravity actions, which exhibit spontaneously broken local supersymmetry and allow for de Sitter vacua for certain values of the parameters. They are obtained by coupling the standard N=2 supergravity-matter systems to th
We use exceptional field theory as a tool to work out the full non-linear reduction ansaetze for the AdS$_5times S^5$ compactification of IIB supergravity and its non-compact counterparts in which the sphere $S^5$ is replaced by the inhomogeneous hyp
We perform a careful investigation of which p-form fields can be introduced consistently with the supersymmetry algebra of IIA and/or IIB ten-dimensional supergravity. In particular the ten-forms, also known as top-forms, require a careful analysis s