ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant interaction of trapped cold atoms with a magnetic cantilever tip

201   0   0.0 ( 0 )
 نشر من قبل Andrew A. Geraci
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic resonance in an ensemble of laser-cooled trapped Rb atoms is excited using a micro- cantilever with a magnetic tip. The cantilever is mounted on a multi-layer chip designed to capture, cool, and magnetically transport cold atoms. The coupling is observed by measuring the loss from a magnetic trap as the oscillating cantilever induces Zeeman state transitions in the atoms. Interfacing cold atoms with mechanical devices could enable probing and manipulating atomic spins with nanometer spatial resolution and single-spin sensitivity, leading to new capabilities in quantum computation, quantum simulation, or precision sensing.



قيم البحث

اقرأ أيضاً

161 - D. Reitz , C. Sayrin , R. Mitsch 2013
We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Rams ey fringes as well as spin echo signals and infer a reversible dephasing time $T_2^ast=0.6$ ms and an irreversible dephasing time $T_2^prime=3.7$ ms. By theoretically modelling the signals, we find that, for our experimental parameters, $T_2^ast$ and $T_2^prime$ are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.
Recent progresses on quantum control of cold atoms and trapped ions in both the scientific and technological aspects greatly advance the applications in precision measurement. Thanks to the exceptional controllability and versatility of these massive quantum systems, unprecedented sensitivity has been achieved in clocks, magnetometers and interferometers based on cold atoms and ions. Besides, these systems also feature many characteristics that can be employed to facilitate the applications in different scenarios. In this review, we briefly introduce the principles of optical clocks, cold atom magnetometers and atom interferometers used for precision measurement of time, magnetic field, and inertial forces. The main content is then devoted to summarize some recent experimental and theoretical progresses in these three applications, with special attention being paid to the new designs and possibilities towards better performance. The purpose of this review is by no means to give a complete overview of all important works in this fast developing field, but to draw a rough sketch about the frontiers and show the fascinating future lying ahead.
Studies of cold atom collisions and few-body interactions often require the energy dependence of the scattering phase shift, which is usually expressed in terms of an effective-range expansion. We use accurate coupled-channel calculations on $^{6}$Li , $^{39}$K and $^{133}$Cs to explore the behavior of the effective range in the vicinity of both broad and narrow Feshbach resonances. We show that commonly used expressions for the effective range break down dramatically for narrow resonances and near the zero-crossings of broad resonances. We present an alternative parametrization of the effective range that is accurate through both the pole and the zero-crossing for both broad and narrow resonances. However, the effective range expansion can still fail at quite low collision energies, particularly around narrow resonances. We demonstrate that an analytical form of an energy and magnetic field-dependent phase shift, based on multichannel quantum defect theory, gives accurate results for the energy-dependent scattering length.
We investigate the dynamics of an ion sympathetically cooled by another laser-cooled ion or small ion crystal. To this end, we develop simple models of the cooling dynamics in the limit of weak Coulomb interactions. Experimentally, we create a two-io n crystal of Ca$^+$ and Al$^+$ by photo-ionization of neutral atoms produced by laser ablation. We characterize the velocity distribution of the laser-ablated atoms crossing the trap by time-resolved fluorescence spectroscopy. We observe neutral atom velocities much higher than the ones of thermally heated samples and find as a consequence long sympathethic cooling times before crystallization occurs. Our key result is a new technique for detecting the loading of an initially hot ion with energy in the eV range by monitoring the motional state of a Doppler-cooled ion already present in the trap. This technique not only detects the ion but also provides information about dynamics of the sympathetic cooling process.
We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonan t probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of $sim$,1,mrad at a detuning of six times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to non-destructively determine the number of atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا