ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dzyaloshinskii-Moriya interaction is under control: an orchestrated flip of the chiral link between structure and magnetism for Fe$_{1-x}$Co$_x$Si

146   0   0.0 ( 0 )
 نشر من قبل Sven-Arne Siegfried
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monosilicides of 3d-metals frequently show a chiral magnetic ordering with the absolute configuration defined by the chirality of the crystal structure and the sign of the Dzyaloshinskii-Moriya interaction (DMI). Structural and magnetic chiralities are probed here for Fe$_{1-x}$Co$_x$Si series and their mutual relationship is found to be dependent on the chemical composition. The chirality of crystal structure was previously shown to be governed by crystal growth, and the value of the DMI is nearly the same for all monosilicides of Fe, Co and Mn. Our findings indicate that the sign of the DMI in Fe$_{1-x}$Co$_x$Si is controlled by the Co composition $x$, thus, opening a route towards controlled design of chiral spintronics devices.



قيم البحث

اقرأ أيضاً

We present a systematic study of the ac susceptibility of the chiral magnet Fe$_{1-x}$Co$_x$Si with $x$ = 0.30 covering four orders of magnitude in frequencies from 0.1 Hz to 1 kHz, with particular emphasis to the pronounced history dependence. Chara cteristic relaxation times ranging from a few milliseconds to tens of seconds are observed around the skyrmion lattice A-phase, the helical-to-conical transition and in a region above $T_C$. The distribution of relaxation frequencies around the A-phase is broad, asymmetric and originates from multiple coexisting relaxation processes. The pronounced dependence of the magnetic phase diagram on the magnetic history and cooling rates as well as the asymmetric frequency dependence and slow dynamics suggest more complicated physical phenomena in Fe$_{0.7}$Co$_{0.3}$Si than in other chiral magnets.
The finite-temperature magnetic properties of Fe$_x$Pd$_{1-x}$ and Co$_x$Pt$_{1-x}$ alloys have been investigated. It is shown that the temperature-dependent magnetic behaviour of alloys, composed of originally magnetic and non-magnetic elements, can not be described properly unless the coupling between magnetic moments at magnetic atoms (Fe,Co) mediated through the interactions with induced magnetic moments of non-magnetic atoms (Pd,Pt) is included. A scheme for the calculation of the Curie temperature ($T_C$) for this type of systems is presented which is based on the extended Heisenberg Hamiltonian with the appropriate exchange parameters $J_{ij}$ obtained from {em ab-initio} electronic structure calculations. Within the present study the KKR Greens function method has been used to calculate the $J_{ij}$ parameters. A comparison of the obtained Curie temperatures for Fe$_x$Pd$_{1-x}$ and Co$_x$Pt$_{1-x}$ alloys with experimental data shows rather good agreement.
We studied electric field modification of magnetic properties in a Pt/Co/AlO$_x$ trilayer via magneto-optical Kerr microscopy. We observed the spontaneous formation of labyrinthine magnetic domain structure due to thermally activated domain nucleatio n and propagation under zero applied magnetic field. A variation of the period of the labyrinthine structure under electric field is observed as well as saturation magnetization and magnetic anisotropy variations. Using an analytical formula of the stripe equilibrium width we estimate the variation of the interfacial Dzyaloshinskii-Moriya interaction under electric field as function of the exchange stiffness constant.
Small angle neutron scattering measurements on a bulk single crystal of the doped chiral magnet Fe$_{1-x}$Co$_x$Si with $x$=0.3 reveal a pronounced effect of the magnetic history and cooling rates on the magnetic phase diagram. The extracted phase di agrams are qualitatively different for zero and field cooling and reveal a metastable skyrmion lattice phase outside the A-phase for the latter case. These thermodynamically metastable skyrmion lattice correlations coexist with the conical phase and can be enhanced by increasing the cooling rate. They appear in a wide region of the phase diagram at temperatures below the $A$-phase but also at fields considerably smaller or higher than the fields required to stabilize the A-phase.
The Dzyaloshinskii-Moriya interaction (DMI) has been shown to stabilise Ne{e}l domain walls in magnetic thin films, allowing high domain wall velocities driven by spin current effects. DMI occurs at the interface between ferromagnetic and heavy metal layers with strong spin-orbit coupling, but details of the interaction remain to be understood and the role of proximity induced magnetism (PIM) in the heavy metal is unknown. We report interfacial DMI and PIM in Pt determined as a function of Au and Ir spacer layers in Pt/Co/Au,Ir/Pt. The length-scale for both interactions is sensitive to sub-nanometre changes in the spacer thickness, and they correlate over sub mono-layer spacer thicknesses, but not for thicker spacers. The spacer layer thickness dependence of the Pt PIM for both Au and Ir shows a rapid monotonic decay, while the DMI changes rapidly but has a two-step approach to saturation and continues to change, even after the PIM is lost.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا