ﻻ يوجد ملخص باللغة العربية
The Dzyaloshinskii-Moriya interaction (DMI) has been shown to stabilise Ne{e}l domain walls in magnetic thin films, allowing high domain wall velocities driven by spin current effects. DMI occurs at the interface between ferromagnetic and heavy metal layers with strong spin-orbit coupling, but details of the interaction remain to be understood and the role of proximity induced magnetism (PIM) in the heavy metal is unknown. We report interfacial DMI and PIM in Pt determined as a function of Au and Ir spacer layers in Pt/Co/Au,Ir/Pt. The length-scale for both interactions is sensitive to sub-nanometre changes in the spacer thickness, and they correlate over sub mono-layer spacer thicknesses, but not for thicker spacers. The spacer layer thickness dependence of the Pt PIM for both Au and Ir shows a rapid monotonic decay, while the DMI changes rapidly but has a two-step approach to saturation and continues to change, even after the PIM is lost.
Despite a decade of research, the precise mechanisms occurring at interfaces underlying the Dzyaloshinskii-Moriya interaction (DMI), and thus the possibility of fine-tuning it, are not yet fully identified. In this study, we investigate the origin of
The interfacial Dzyaloshinskii-Moriya interaction (iDMI), surface anisotropy energy, and spin pumping at the Ir/Co interface are experimentally investigated by performing Brillouin light scattering. Contrary to previous reports, we suggest that the s
We studied electric field modification of magnetic properties in a Pt/Co/AlO$_x$ trilayer via magneto-optical Kerr microscopy. We observed the spontaneous formation of labyrinthine magnetic domain structure due to thermally activated domain nucleatio
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is attracting great interests for spintronics. An iDMI constant larger than 3 mJ/m^2 is expected to minimize the size of skyrmions and to optimize the DW dynamics. In this study, we experimenta
A major challenge for future spintronics is to develop suitable spin transport channels with long spin lifetime and propagation length. Graphene can meet these requirements, even at room temperature. On the other side, taking advantage of the fast mo