ﻻ يوجد ملخص باللغة العربية
Bells theorem can refer to two different theorems that John Bell proved, the first in 1964 and the second in 1976. His 1964 theorem is the incompatibility of quantum phenomena with the joint assumptions of Locality and Predetermination. His 1976 theorem is their incompatibility with the single property of Local Causality. This is contrary to Bells own later assertions, that his 1964 theorem began with the assumption of Local Causality, even if not by that name. Although the two Bells theorems are logically equivalent, their assumptions are not. Hence, the earlier and later theorems suggest quite different conclusions, embraced by operationalists and realists, respectively. The key issue is whether Locality or Local Causality is the appropriate notion emanating from Relativistic Causality, and this rests on ones basic notion of causation. For operationalists the appropriate notion is what is here called the Principle of Agent-Causation, while for realists it is Reichenbachs Principle of common cause. By breaking down the latter into even more basic Postulates, it is possible to obtain a version of Bells theorem in which each camp could reject one assumption, happy that the remaining assumptions reflect its weltanschauung. Formulating Bells theorem in terms of causation is fruitful not just for attempting to reconcile the two camps, but also for better describing the ontology of different quantum interpretations and for more deeply understanding the implications of Bells marvellous work.
Many of the heated arguments about the meaning of Bells theorem arise because this phrase can refer to two different theorems that John Bell proved, the first in 1964 and the second in 1976. His 1964 theorem is the incompatibility of quantum phenomen
Yes. That is my polemical reply to the titular question in Travis Norsens self-styled polemical response to Howard Wisemans recent paper. Less polemically, I am pleased to see that on two of my positions --- that Bells 1964 theorem is different from
Bells inequality sets a strict threshold for how strongly correlated the outcomes of measurements on two or more particles can be, if the outcomes of each measurement are independent of actions undertaken at arbitrarily distant locations. Quantum mec
In addition to the regular Schwabe cycles of approximately 11 y, prolonged solar activity minima have been identified through the direct observation of sunspots and aurorae, as well as proxy data of cosmogenic isotopes. Some of these minima have been
Bells theorem is based on three assumptions: realism, locality, and measurement independence. The third assumption is identified by Bell as linked to the freedom of choice hypothesis. He holds that ultimately the human free will can ensure the measur