ﻻ يوجد ملخص باللغة العربية
We propose a practical folding model to describe $^{3}$He elastic scattering. In the model, $^{3}$He optical potentials are constructed by making the folding procedure twice. First the nucleon-target potential is evaluated by folding the Melbourne $g$-matrix with the target density and localizing the nonlocal folding potential with the Brieva--Rook method, and second the resulting local nucleon-target potential is folded with the $^{3}$He density. This double single-folding model well describes $^{3}$He elastic scattering from $^{58}$Ni and $^{208}$Pb targets in a wide incident-energy range from 30 MeV/nucleon to 150 MeV/nucleon with no adjustable parameter. Spin-orbit force effects on differential cross sections are found to be appreciable only at higher incident energies such as 150 MeV/nucleon. Three-nucleon breakup effects of $^{3}$He are investigated with the continuum discretized coupled-channels method and are found to be appreciable only at lower incident energies around 40 MeV/nucleon. Effects of knock-on exchange processes are also analyzed.
We present a reliable double-folding (DF) model for $^{4}$He-nucleus scattering, using the Melbourne $g$-matrix nucleon-nucleon interaction that explains nucleon-nucleus scattering with no adjustable parameter. In the DF model, only the target densit
The analysis of semi-inclusive deep inelastic electron scattering off polarized $^3$He at finite momentum transfers, aimed at the extraction of the quark transverse-momentum distributions in the neutron, requires the use of a distorted spin-dependent
Microscopic calculations of four-body collisions become very challenging in the energy regime above the threshold for four free particles. The neutron-${}^3$He scattering is an example of such process with elastic, rearrangement, and breakup channels
We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated
Elastic scattering observables (differential cross section and analyzing power) are calculated for the reaction $^6$He(p,p)$^6$He at projectile energies starting at 71 MeV/nucleon. The optical potential needed to describe the reaction is based on a m