ﻻ يوجد ملخص باللغة العربية
We study the effect of a magnetic insulator (Yttrium Iron Garnet - YIG) substrate on the spin transport properties of Ni$_{80}$Fe$_{20}$/Al nonlocal spin valve (NLSV) devices. The NLSV signal on the YIG substrate is about 2 to 3 times lower than that on a non magnetic SiO$_2$ substrate, indicating that a significant fraction of the spin-current is absorbed at the Al/YIG interface. By measuring the NLSV signal for varying injector-to-detector distance and using a three dimensional spin-transport model that takes spin current absorption at the Al/YIG interface into account we obtain an effective spin-mixing conductance $G_{uparrowdownarrow}simeq 5 - 8times 10^{13}~Omega^{-1}$m$^{-2}$. We also observe a small but clear modulation of the NLSV signal when rotating the YIG magnetization direction with respect to the fixed spin polarization of the spin accumulation in the Al. Spin relaxation due to thermal magnons or roughness of the YIG surface may be responsible for the observed small modulation of the NLSV signal.
The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injecte
The charge and spin diffusion equations taking into account spin-flip and spin-transfer torque were numerically solved using a finite element method in complex non-collinear geometry with strongly inhomogeneous current flow. As an illustration, spin-
Magnetization switching due to a current-pulse in symmetric and asymmetric spin valves is studied theoretically within the macrospin model. The switching process and the corresponding switching parameters are shown to depend significantly on the puls
We perform 3D micromagnetic simulations of current-driven magnetization dynamics in nanoscale exchange biased spin-valves that take account of (i) back action of spin-transfer torque on the pinned layer, (ii) non-linear damping and (iii) random therm
Spin-transfer torque and current induced spin dynamics in spin-valve nanopillars with the free magnetic layer located between two magnetic films of fixed magnetic moments is considered theoretically. The spin-transfer torque in the limit of diffusive