ﻻ يوجد ملخص باللغة العربية
We perform 3D micromagnetic simulations of current-driven magnetization dynamics in nanoscale exchange biased spin-valves that take account of (i) back action of spin-transfer torque on the pinned layer, (ii) non-linear damping and (iii) random thermal torques. Our simulations demonstrate that all these factors significantly impact the current-driven dynamics and lead to a better agreement between theoretical predictions and experimental results. In particular, we observe that, at a non-zero temperature and a sub-critical current, the magnetization dynamics exhibits nonstationary behaviour in which two independent persistent oscillatory modes are excited which compete for the angular momentum supplied by spin-polarized current. Our results show that this multi-mode behaviour can be induced by combined action of thermal and spin transfer torques.
We experimentally show that exchange magnons can be detected using a combination of spin pumping and inverse spin-Hall effect (iSHE) proving its wavelength integrating capability down to the sub-micrometer scale. The magnons were injected in a ferrim
The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injecte
An in situ measurement of spin transport in a graphene nonlocal spin valve is used to quantify the spin current absorbed by a small (250 nm $times$ 750 nm) metallic island. The experiment allows for successive depositions of either Fe or Cu without b
The charge and spin diffusion equations taking into account spin-flip and spin-transfer torque were numerically solved using a finite element method in complex non-collinear geometry with strongly inhomogeneous current flow. As an illustration, spin-
A mechanism to generate a spin-polarized current in a two-terminal zigzag silicene nanoribbon is predicted. As a weak local exchange field that is parallel to the surface of silicene is applied on one of edges of the silicene nanoribbon, a gap is ope