ﻻ يوجد ملخص باللغة العربية
We study the ground-state properties of an extended periodic Anderson model to understand the role of Hunds coupling between localized and itinerant electrons using the density-matrix renormalization group algorithm. By calculating the von Neumann entropies we show that two phase transitions occur and two new phases appear as the hybridization is increased in the symmetric half-filled case due to the competition between Kondo-effect and Hunds coupling. In the intermediate phase, which is bounded by two critical points, we found a dimerized ground state, while in the other spatially homogeneous phases the ground state is Haldane-like and Kondo-singlet-like, respectively. We also determine the entanglement spectrum and the entanglement diagram of the system by calculating the mutual information thereby clarifying the structure of each phase.
We study the momentum distribution of the electrons in an extended periodic Anderson model, where the interaction, $U_{cf}$, between itinerant and localized electrons is taken into account. In the symmetric half-filled model, due to the increase of t
Continuous-Time Quantum Monte Carlo (CT-QMC) method combined with Dynamical Mean Field Theory (DMFT) is used to calculate both Periodic Anderson Model (PAM) and Kondo Lattice Model (KLM). Different parameter sets of both models are connected by the S
The cooperative behavior of quantum impurities on 2D materials, such as graphene and bilayer graphene, is characterized by a non-trivial competition between screening (Kondo effect), and Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetism. In addition, du
We investigate the effect of the Coulomb interaction, $U_{cf}$, between the conduction and f electrons in the periodic Anderson model using the density-matrix renormalization-group algorithm. We calculate the excitation spectrum of the half-filled sy
We investigate the behavior of the periodic Anderson model in the presence of $d$-$f$ Coulomb interaction ($U_{df}$) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the G