ﻻ يوجد ملخص باللغة العربية
Continuous-Time Quantum Monte Carlo (CT-QMC) method combined with Dynamical Mean Field Theory (DMFT) is used to calculate both Periodic Anderson Model (PAM) and Kondo Lattice Model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For degeneracy N=2, a special particle-hole symmetric case of PAM at half filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f electrons directly from KLM. The method is further applied to higher degenerate case and to realsitic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value.
We study the ground-state properties of an extended periodic Anderson model to understand the role of Hunds coupling between localized and itinerant electrons using the density-matrix renormalization group algorithm. By calculating the von Neumann en
We report on the electrical resistivity, magnetic susceptibility and heat-capacity measurements on a new intermetallic compound CePd5Al2, crystallizing in the ZrNi2Al5-type tetragonal structure, with lattice parameters a = 4.156 A and c = 14.883 A. T
Dilute magnetic impurities in a disordered Fermi liquid are considered close to the Anderson metal-insulator transition (AMIT). Critical Power law correlations between electron wave functions at different energies in the vicinity of the AMIT result i
The temperature ($T$) - magnetic field ($H$) phase diagram for the tetragonal layered compound CeSbSe, is determined from magnetization, specific heat, and electrical resistivity measurements. This system exhibits complex magnetic ordering at $T_{rm{
We analyze the magnetic and electronic properties of the quantum critical heavy fermion superconductor beta-YbAlB4, calculating the Fermi surface and the angular dependence of the extremal orbits relevant to the de Haas--van Alphen measurements. Usin