ﻻ يوجد ملخص باللغة العربية
The superfluid $^3$He formed by spin-triplet $p$-wave Cooper pairs is a typical topological superfluid. In the superfluid $^3$He B-phase, several kinds of vortices classified by spatial symmetries $P_1$, $P_2$, and $P_3$ are produced, where $P_1$ is inversion symmetry, $P_2$ is magnetic reflection symmetry, and $P_3$ is magnetic $pi$-rotation symmetry. We have calculated the vortex bound states by the Bogoliubov-de Gennes theory and the quasiclassical Eilenberger theory, and also clarified symmetry protection of the low energy excitations by the spatial symmetries. On the symmetry protection, $P_3$ symmetry plays a key role which gives two-fold degenerate Majorana zero modes. Then, the bound states in the most symmetric $o$ vortex with $P_1$, $P_2$, and $P_3$ symmetries and in $w$ vortex with $P_3$ symmetry have the symmetry protected degenerate Majorana zero modes. On the other hand, zero energy modes in $v$ vortex, which is believed to be realized in the actual B-phase, are not protected, and in consequence become gapped by breaking axial symmetry. The excitation gap may have been observed as the variation of critical velocity. We have also suggested an experimental setup to create $o$ vortex with Majorana zero modes by a confinement and a magnetic field.
A microelectromechanical oscillator with a gap of 1.25 $mu$m was immersed in superfluid $^3$He-B and cooled below 250 $mu$K at various pressures. Mechanical resonances of its shear motion were measured at various levels of driving force. The oscillat
The pressure dependence of the order parameter in superfluid $^3$He is amazingly simple. In the Ginzburg-Landau regime, i.e. close to $T_c$, the square of the order parameter can be accurately measured by its proportionality to NMR frequency shifts a
The mechanical resonance properties of a micro-electro-mechanical oscillator with a gap of 1.25 $mu$m was studied in superfluid $^3$He-B at various pressures. The oscillator was driven in the linear damping regime where the damping coefficient is ind
The superfluid $^3$He B phase, one of the oldest unconventional fermionic condensates experimentally realized, is recently predicted to support Majorana fermion surface states. Majorana fermion, which is characterized by the equivalence of particle a
We consider fermionic states bound on domain walls in a Weyl superfluid $^3$He-A and on interfaces between $^3$He-A and a fully gapped topological superfluid $^3$He-B. We demonstrate that in both cases fermionic spectrum contains Fermi arcs which are