ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface Majorana Cone of the Superfluid $^3$He B Phase

158   0   0.0 ( 0 )
 نشر من قبل Katsuhiko Nagai
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The superfluid $^3$He B phase, one of the oldest unconventional fermionic condensates experimentally realized, is recently predicted to support Majorana fermion surface states. Majorana fermion, which is characterized by the equivalence of particle and antiparticle, has a linear dispersion relation referred to as the Majorana cone. We measured the transverse acoustic impedance $Z$ of the superfluid$^3$He B phase changing its boundary condition and found a growth of peak in $Z$ on a higher specularity wall. Our theoretical analysis indicates that the variation of $Z$ is induced by the formation of the cone-like dispersion relation and thus confirms the important feature of the Majorana fermion in the specular limit.



قيم البحث

اقرأ أيضاً

Andreev reflection of quasiparticle excitations from quantized line vortices is reviewed in the isotropic B phase of superfluid $^3$He in the temperature regime of ballistic quasiparticle transport at $T leq 0.20,T_mathrm{c}$. The reflection from an array of rectilinear vortices in solid-body rotation is measured with a quasiparticle beam illuminating the array mainly in the orientation along the rotation axis. The result is in agreement with the calculated Andreev reflection. The Andreev signal is also used to analyze the spin down of the superfluid component after a sudden impulsive stop of rotation from an equilibrium vortex state. In a measuring setup where the rotating cylinder has a rough bottom surface, annihilation of the vortices proceeds via a leading rapid turbulent burst followed by a trailing slow laminar decay from which the mutual friction dissipation can be determined. In contrast to currently accepted theory, mutual friction is found to have a finite value in the zero temperature limit: $alpha (T rightarrow 0) = (5 pm 0.5) cdot 10^{-4}$.
In superfluid $^3$He-B confined in a slab geometry, domain walls between regions of different order parameter orientation are predicted to be energetically stable. Formation of the spatially-modulated superfluid stripe phase has been proposed. We con fined $^3$He in a 1.1 $mu$m high microfluidic cavity and cooled it into the B phase at low pressure, where the stripe phase is predicted. We measured the surface-induced order parameter distortion with NMR, sensitive to the formation of domains. The results rule out the stripe phase, but are consistent with 2D modulated superfluid order.
In superfluid $^3$He-B externally pumped quantized spin-wave excitations or magnons spontaneously form a Bose-Einstein condensate in a 3-dimensional trap created with the order-parameter texture and a shallow minimum in the polarizing field. The cond ensation is manifested by coherent precession of the magnetization with a common frequency in a large volume. The trap shape is controlled by the profile of the applied magnetic field and by the condensate itself via the spin-orbit interaction. The trapping potential can be experimentally determined with the spectroscopy of the magnon levels in the trap. We have measured the decay of the ground state condensates after switching off the pumping in the temperature range $(0.14div 0.2)T_{mathrm{c}}$. Two contributions to the relaxation are identified: (1) spin-diffusion with the diffusion coefficient proportional to the density of thermal quasiparticles and (2) the approximately temperature-independent radiation damping caused by the losses in the NMR pick-up circuit. The measured dependence of the relaxation on the shape of the trapping potential is in a good agreement with our calculations based on the magnetic field profile and the magnon-modified texture. Our values for the spin diffusion coefficient at low temperatures agree with the theoretical prediction and earlier measurements at temperatures above $0.5T_{mathrm{c}}$.
We calculate the effect of a heat current on transporting $^3$He dissolved in superfluid $^4$He at ultralow concentration, as will be utilized in a proposed experimental search for the electric dipole moment of the neutron (nEDM). In this experiment, a phonon wind will generated to drive (partly depolarized) $^3$He down a long pipe. In the regime of $^3$He concentrations $tilde < 10^{-9}$ and temperatures $sim 0.5$ K, the phonons comprising the heat current are kept in a flowing local equilibrium by small angle phonon-phonon scattering, while they transfer momentum to the walls via the $^4$He first viscosity. On the other hand, the phonon wind drives the $^3$He out of local equilibrium via phonon-$^3$He scattering. For temperatures below $0.5$ K, both the phonon and $^3$He mean free paths can reach the centimeter scale, and we calculate the effects on the transport coefficients. We derive the relevant transport coefficients, the phonon thermal conductivity and the $^3$He diffusion constants from the Boltzmann equation. We calculate the effect of scattering from the walls of the pipe and show that it may be characterized by the average distance from points inside the pipe to the walls. The temporal evolution of the spatial distribution of the $^3$He atoms is determined by the time dependent $^3$He diffusion equation, which describes the competition between advection by the phonon wind and $^3$He diffusion. As a consequence of the thermal diffusivity being small compared with the $^3$He diffusivity, the scale height of the final $^3$He distribution is much smaller than that of the temperature gradient. We present exact solutions of the time dependent temperature and $^3$He distributions in terms of a complete set of normal modes.
The superfluid $^3$He formed by spin-triplet $p$-wave Cooper pairs is a typical topological superfluid. In the superfluid $^3$He B-phase, several kinds of vortices classified by spatial symmetries $P_1$, $P_2$, and $P_3$ are produced, where $P_1$ is inversion symmetry, $P_2$ is magnetic reflection symmetry, and $P_3$ is magnetic $pi$-rotation symmetry. We have calculated the vortex bound states by the Bogoliubov-de Gennes theory and the quasiclassical Eilenberger theory, and also clarified symmetry protection of the low energy excitations by the spatial symmetries. On the symmetry protection, $P_3$ symmetry plays a key role which gives two-fold degenerate Majorana zero modes. Then, the bound states in the most symmetric $o$ vortex with $P_1$, $P_2$, and $P_3$ symmetries and in $w$ vortex with $P_3$ symmetry have the symmetry protected degenerate Majorana zero modes. On the other hand, zero energy modes in $v$ vortex, which is believed to be realized in the actual B-phase, are not protected, and in consequence become gapped by breaking axial symmetry. The excitation gap may have been observed as the variation of critical velocity. We have also suggested an experimental setup to create $o$ vortex with Majorana zero modes by a confinement and a magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا