ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift/UVOT grism monitoring of NGC 5548 in 2013: an attempt at MgII reverberation mapping

135   0   0.0 ( 0 )
 نشر من قبل Edward Cackett
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Reverberation-mapping-based scaling relations are often used to estimate the masses of black holes from single-epoch spectra of AGN. While the radius-luminosity relation that is the basis of these scaling relations is determined using reverberation mapping of the H$beta$ line in nearby AGN, the scaling relations are often extended to use other broad emission lines, such as MgII, in order to get black hole masses at higher redshifts when H$beta$ is redshifted out of the optical waveband. However, there is no radius-luminosity relation determined directly from MgII. Here, we present an attempt to perform reverberation mapping using MgII in the well-studied nearby Seyfert 1, NGC 5548. We used Swift to obtain UV grism spectra of NGC 5548 once every two days from April to September 2013. Concurrent photometric UV monitoring with Swift provides a well determined continuum lightcurve that shows strong variability. The MgII emission line, however, is not strongly correlated with the continuum variability, and there is no significant lag between the two. We discuss these results in the context of using MgII scaling relations to estimate high-redshift black hole masses.



قيم البحث

اقرأ أيضاً

Recent intensive Swift monitoring of the Seyfert 1 galaxy NGC 5548 yielded 282 usable epochs over 125 days across six UV/optical bands and the X-rays. This is the densest extended AGN UV/optical continuum sampling ever obtained, with a mean sampling rate <0.5 day. Approximately daily HST UV sampling was also obtained. The UV/optical light curves show strong correlations (r_max = 0.57 - 0.90) and the clearest measurement to date of interband lags. These lags are well-fit by a tau propto lambda^4/3 wavelength dependence, with a normalization that indicates an unexpectedly large disk radius of 0.35 +/- 0.05 lt-day at 1367 A, assuming a simple face-on model. The U-band shows a marginally larger lag than expected from the fit and surrounding bands, which could be due to Balmer continuum emission from the broad-line region as suggested by Korista and Goad. The UV/X-ray correlation is weaker (r_max < 0.45) and less consistent over time. This indicates that while Swift is beginning to measure UV/optical lags in general agreement with accretion disk theory (although the derived size is larger than predicted), the relationship with X-ray variability is less well understood. Combining this accretion disk size estimate with those from quasar microlensing studies suggests that AGN disk sizes scale approximately linearly with central black hole mass over a wide range of masses.
We present results of time-series analysis of the first year of the Fairall 9 intensive disc-reverberation campaign. We used Swift and the Las Cumbres Observatory global telescope network to continuously monitor Fairall 9 from X-rays to near-infrared at a daily to sub-daily cadence. The cross-correlation function between bands provides evidence for a lag spectrum consistent with the $tauproptolambda^{4/3}$ scaling expected for an optically thick, geometrically thin blackbody accretion disc. Decomposing the flux into constant and variable components, the variable components spectral energy distribution is slightly steeper than the standard accretion disc prediction. We find evidence at the Balmer edge in both the lag and flux spectra for an additional bound-free continuum contribution that may arise from reprocessing in the broad-line region. The inferred driving light curve suggests two distinct components, a rapidly variable ($<4$ days) component arising from X-ray reprocessing, and a more slowly varying ($>100$ days) component with an opposite lag to the reverberation signal.
We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 to 9157 angstroms) combine simultaneous HST , Sw ift , and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination, i, temperature T1 at 1 light day from the black hole, and a temperature-radius slope, alpha. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/LEdd = 0.1
In 2014 the NGC 5548 Space Telescope and Optical Reverberation Mapping campaign discovered a two-month anomaly when variations in the absorption and emission lines decorrelated from continuum variations. During this time the soft X-ray part of the in trinsic spectrum had been strongly absorbed by a line-of-sight (LOS) obscurer, which was interpreted as the upper part of a disk wind. Our first paper showed that changes in the LOS obscurer produce the decorrelation between the absorption lines and the continuum. A second study showed that the base of the wind shields the BLR, leading to the emission-line decorrelation. In that study, we proposed the wind is normally transparent with no effect on the spectrum. Changes in the wind properties alter its shielding and affect the SED striking the BLR, producing the observed decorrelations. In this work, we investigate the impact of a translucent wind on the emission lines. We simulate the obscuration using XMM-Newton, NuSTAR, and HST observations to determine the physical characteristics of the wind. We find that a translucent wind can contribute a part of the He II and Fe K? emission. It has a modest optical depth to electron scattering, which explains the fainter far-side emission in the observed velocity delay maps. The wind produces the very broad base seen in the UV emission lines and may also be present in the Fe K? line. Our results highlight the importance of accounting for the effects of such winds in the analysis of the physics of the central engine.
We present the calibration of the Swift UVOT grisms, of which there are two, providing low-resolution field spectroscopy in the ultraviolet and optical bands respectively. The UV grism covers the range 1700-5000 Angstrom with a spectral resolution of 75 at 2600 Angstrom for source magnitudes of u=10-16 mag, while the visible grism covers the range 2850-6600 Angstrom with a spectral resolution of 100 at 4000 Angstrom for source magnitudes of b=12-17 mag. This calibration extends over all detector positions, for all modes used during operations. The wavelength accuracy (1-sigma) is 9 Angstrom in the UV grism clocked mode, 17 Angstrom in the UV grism nominal mode and 22 Angstrom in the visible grism. The range below 2740 Angstrom in the UV grism and 5200 Angstrom in the visible grism never suffers from overlapping by higher spectral orders. The flux calibration of the grisms includes a correction we developed for coincidence loss in the detector. The error in the coincidence loss correction is less than 20%. The position of the spectrum on the detector only affects the effective area (sensitivity) by a few percent in the nominal modes, but varies substantially in the clocked modes. The error in the effective area is from 9% in the UV grism clocked mode to 15% in the visible grism clocked mode .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا