ترغب بنشر مسار تعليمي؟ اضغط هنا

Space Telescope and Optical Reverberation Mapping Project. II. Swift and HST Reverberation Mapping of the Accretion Disk of NGC 5548

135   0   0.0 ( 0 )
 نشر من قبل Rick Edelson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent intensive Swift monitoring of the Seyfert 1 galaxy NGC 5548 yielded 282 usable epochs over 125 days across six UV/optical bands and the X-rays. This is the densest extended AGN UV/optical continuum sampling ever obtained, with a mean sampling rate <0.5 day. Approximately daily HST UV sampling was also obtained. The UV/optical light curves show strong correlations (r_max = 0.57 - 0.90) and the clearest measurement to date of interband lags. These lags are well-fit by a tau propto lambda^4/3 wavelength dependence, with a normalization that indicates an unexpectedly large disk radius of 0.35 +/- 0.05 lt-day at 1367 A, assuming a simple face-on model. The U-band shows a marginally larger lag than expected from the fit and surrounding bands, which could be due to Balmer continuum emission from the broad-line region as suggested by Korista and Goad. The UV/X-ray correlation is weaker (r_max < 0.45) and less consistent over time. This indicates that while Swift is beginning to measure UV/optical lags in general agreement with accretion disk theory (although the derived size is larger than predicted), the relationship with X-ray variability is less well understood. Combining this accretion disk size estimate with those from quasar microlensing studies suggests that AGN disk sizes scale approximately linearly with central black hole mass over a wide range of masses.



قيم البحث

اقرأ أيضاً

We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 to 9157 angstroms) combine simultaneous HST , Sw ift , and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination, i, temperature T1 at 1 light day from the black hole, and a temperature-radius slope, alpha. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/LEdd = 0.1
In 2014 the NGC 5548 Space Telescope and Optical Reverberation Mapping campaign discovered a two-month anomaly when variations in the absorption and emission lines decorrelated from continuum variations. During this time the soft X-ray part of the in trinsic spectrum had been strongly absorbed by a line-of-sight (LOS) obscurer, which was interpreted as the upper part of a disk wind. Our first paper showed that changes in the LOS obscurer produce the decorrelation between the absorption lines and the continuum. A second study showed that the base of the wind shields the BLR, leading to the emission-line decorrelation. In that study, we proposed the wind is normally transparent with no effect on the spectrum. Changes in the wind properties alter its shielding and affect the SED striking the BLR, producing the observed decorrelations. In this work, we investigate the impact of a translucent wind on the emission lines. We simulate the obscuration using XMM-Newton, NuSTAR, and HST observations to determine the physical characteristics of the wind. We find that a translucent wind can contribute a part of the He II and Fe K? emission. It has a modest optical depth to electron scattering, which explains the fainter far-side emission in the observed velocity delay maps. The wind produces the very broad base seen in the UV emission lines and may also be present in the Fe K? line. Our results highlight the importance of accounting for the effects of such winds in the analysis of the physics of the central engine.
We present geometric and dynamical modeling of the broad line region for the multi-wavelength reverberation mapping campaign focused on NGC 5548 in 2014. The dataset includes photometric and spectroscopic monitoring in the optical and ultraviolet, co vering the H$beta$, C IV, and Ly$alpha$ broad emission lines. We find an extended disk-like H$beta$ BLR with a mixture of near-circular and outflowing gas trajectories, while the C IV and Ly$alpha$ BLRs are much less extended and resemble shell-like structures. There is clear radial structure in the BLR, with C IV and Ly$alpha$ emission arising at smaller radii than the H$beta$ emission. Using the three lines, we make three independent black hole mass measurements, all of which are consistent. Combining these results gives a joint inference of $log_{10}(M_{rm BH}/M_odot) = 7.64^{+0.21}_{-0.18}$. We examine the effect of using the $V$ band instead of the UV continuum light curve on the results and find a size difference that is consistent with the measured UV-optical time lag, but the other structural and kinematic parameters remain unchanged, suggesting that the $V$ band is a suitable proxy for the ionizing continuum when exploring the BLR structure and kinematics. Finally, we compare the H$beta$ results to similar models of data obtained in 2008 when the AGN was at a lower luminosity state. We find that the size of the emitting region increased during this time period, but the geometry and black hole mass remain unchanged, which confirms that the BLR kinematics suitably gauge the gravitational field of the central black hole.
The flux variations in the emission lines in active galactic nuclei (AGNs) are driven by variations in the ionizing continuum flux --which are usually reflected in the observable UV-optical continuum. The Reverberation mapping technique measures the delay between line and continuum variations to determine the size of the line emitting region, this is the basis for measurements of the central black hole mass in AGNs. The Space Telescope and Optical Reverberation Mapping Project (AGN STORM) on NGC 5548 in 2014 is the most intensive multi-wavelength AGN monitoring campaign ever. For most of the campaign, the emission-line variations followed changes in the continuum with a time lag, as expected. However, the lines varied independently of the observed UV-optical continuum during a 60 -- 70 day holiday. To understand this remarkable phenomenon, we study the intrinsic absorption lines present in NGC 5548. We identify a novel cycle that reproduces the absorption line variability and thus identify the physics that allows the holiday to occur. In our model, variations in this obscurers line-of-sight covering factor modify the soft X-ray continuum. This leads to changes in the ionization of helium gas in the broad-line region. Ionizing radiation produced by recombining helium then affects the ionization of other species as observed during the AGN STORM holiday. It is likely that any other model which selectively changes the soft X-ray part of the continuum during the holiday can also explain the anomalous emission line behavior observed.
We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multi-wavelength reverberation mapping campaign. The campaign spanned six months and achieved an almost daily cadence with observations from five ground-based telescopes. The H$beta$ and He II $lambda$4686 broad emission-line light curves lag that of the 5100 $AA$ optical continuum by $4.17^{+0.36}_{-0.36}$ days and $0.79^{+0.35}_{-0.34}$ days, respectively. The H$beta$ lag relative to the 1158 $AA$ ultraviolet continuum light curve measured by the Hubble Space Telescope is roughly $sim$50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is $sim$50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for H$beta$ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the H$beta$ and He II $lambda$4686 emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C IV, Ly $alpha$, He II(+O III]), and Si IV(+O IV]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured H$beta$ lag is a factor of five shorter than the expected value implied by the $R_mathrm{BLR} - L_mathrm{AGN}$ relation based on the past behavior of NGC 5548.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا