ترغب بنشر مسار تعليمي؟ اضغط هنا

Interferometric imaging diagnostics of X Hyas circumstellar environment

106   0   0.0 ( 0 )
 نشر من قبل Xavier Haubois
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical interferometry is a powerful tool to investigate the close environment of AGB stars. With a spatial resolution of a few milli-arcseconds, it is even possible to image directly the surface of angularly large objects. This is of special interest forMira stars and red supergiants for which the dust-wind is initiated from or very close to the photosphere by an interplay between pulsation and convection. Based on two-epoch interferometric observations of the Mira star X Hya, we present how the variation of the angular size with wavelength challenges pulsation models and how reconstructed images can reveal the evolution of the object shape and of its asymmetric structures.



قيم البحث

اقرأ أيضاً

The circumstellar environments of classical T Tauri stars are challenging to directly image because of their high star-to-disk contrast ratio. One method to overcome this is by using imaging polarimetry where scattered and consequently polarised star light from the stars circumstellar disk can be separated from the unpolarised light of the central star. We present images of the circumstellar environment of SU Aur, a classical T Tauri star at the transition of T Tauri to Herbig stars. The images directly show that the disk extends out to ~500 au with an inclination angle of $sim$ 50$^circ$. Using interpretive models, we derived very small grains in the surface layers of its disk, with a very steep size- and surface-density distribution. Additionally, we resolved a large and extended nebulosity in our images that is most likely a remnant of the prenatal molecular cloud. The position angle of the disk, determined directly from our images, rules out a polar outflow or jet as the cause of this large-scale nebulosity.
We present spatially-resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85-m baseline Keck Interferometer. Ou r observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 microns wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power-law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br gamma emission line. The measured disk size at and around Br gamma suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.
HD 50138 is a southern star that presents the B[e] phenomenon, but its evolutionary stage is still not well known. This object presents spectral variability, which can be explained by outbursts or shell phases and spectropolarimetric observations hav e shown the presence of a non-spherically symmetric circumstellar environment that is responsible for the B[e] phenomenon. Based on recent optical long baseline interferometric observations from the VLTI/MIDI and VLTI/AMBER, and also from the Keck segment-tilting experiment, we study the structure of the circumstellar environment of HD 50138, through a geometrical analytical modeling, also using the recent LITpro software and considering a large space of parameters. We resolve and describe its circumstellar geometry for the first time in detail. The presence of a dusty circumstellar disk with an orientation onto the sky-plane of 71+-7 degrees, which is perpendicular to the polarimetric measurements from the literature, was derived. We also derived that HD 50138 is seen under an intermediate angle related to the line of sight, 56+-4 degrees. In addition, the structure of the disk and the flux contributions of the gas and dust components is discussed.
The HIFI instrument on board of the Herschel Space Observatory (HSO) has been very successful in detecting molecular lines from circumstellar envelopes around evolved stars, like massive red supergiants, Asymptotic Giant Branch (AGB) and post-AGB sta rs, as well as planetary nebulae. Among others, ammonia has been found in circumstellar envelopes of C-rich AGB stars in amounts that significantly exceeded theoretical predictions for C-rich stars. Few scenarios have been proposed to resolve this problem: formation of ammonia behind the shock front, photochemical processes in the inner part of the envelope partly transparent to UV background radiation due to the clumpy structure of the gas, and formation of ammonia on dust grains. Careful analysis of observations may help to put constraints on one or another mechanism of ammonia formation. Here, we present results of the non-LTE radiative transfer modeling of ammonia transitions including a crucial process of radiative pumping via v$_2$ = 1 vibrational band (at $sim$10 $mu$m) for V Cyg. Only ground-based ammonia transition NH$_{3}$ J = 1$_{0}$ - 0$_{0}$ at 572.5 GHz has been observed by HIFI. Therefore, to determine abundance of ammonia we estimate a photodissociation radius of NH$_{3}$ using chemical model of the envelope consistent with dust grain properties concluded from the spectral energy distribution.
131 - Pierre Kervella 2009
Context: Betelgeuse is one the largest stars in the sky in terms of angular diameter. Structures on the stellar photosphere have been detected in the visible and near-infrared as well as a compact molecular environment called the MOLsphere. Mid-infra red observations have revealed the nature of some of the molecules in the MOLsphere, some being the precursor of dust. Aims: Betelgeuse is an excellent candidate to understand the process of mass loss in red supergiants. Using diffraction-limited adaptive optics (AO) in the near-infrared, we probe the photosphere and close environment of Betelgeuse to study the wavelength dependence of its extension, and to search for asymmetries. Methods: We obtained AO images with the VLT/NACO instrument, taking advantage of the cube mode of the CONICA camera to record separately a large number of short-exposure frames. This allowed us to adopt a lucky imaging approach for the data reduction, and obtain diffraction-limited images over the spectral range 1.04-2.17 $mu$m in 10 narrow-band filters. Results: In all filters, the photosphere of Betelgeuse appears partly resolved. We identify an asymmetric envelope around the star, with in particular a relatively bright plume extending in the southwestern quadrant up to a radius of approximately six times the photosphere. The CN molecule provides an excellent match to the 1.09 mic bandhead in absorption in front of the stellar photosphere, but the emission spectrum of the plume is more difficult to interpret. Conclusions: Our AO images show that the envelope surrounding Betelgeuse has a complex and irregular structure. We propose that the southwestern plume is linked either to the presence of a convective hot spot on the photosphere, or to the rotation of the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا