ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineered Mott ground state in LaTiO$_{3+delta}$/LaNiO$_3$ heterostructure

166   0   0.0 ( 0 )
 نشر من قبل Yanwei Cao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO$_3$ have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental understanding of the electronic and orbital states emerging after interfacial charge-transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of correlated metal LaNiO$_3$ and doped Mott insulator LaTiO$_{3+delta}$, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge-transfer from Ti to Ni sites giving rise to an insulating ground state with orbital polarization and $e_textrm{g}$ orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states.



قيم البحث

اقرأ أيضاً

Measurements of magneto-thermopower (S(H, T)) of interfacial delta doped LaTiO$_3$/SrTiO$_3$ (LTO/STO) heterostructure by an iso-structural antiferromagnetic perovskite LaCrO$_3$ are reported. The thermoelectric power of the pure LTO/STO interface at 300 K is $approx$ 118 $mu$V/K, but increases dramatically on $delta$-doping. The observed linear temperature dependence of S(T) over the temperature range 100 K to 300 K is in agreement with the theory of diffusion thermopower of a two-dimensional electron gas. The S(T) displays a distinct enhancement in the temperature range (T $<$ 100 K) where the sheet resistance shows a Kondo-type minimum. We attributed this maximum in S(T) to Kondo scattering of conduction electron by localized impurity spins at the interface. The suppression of S by a magnetic field, and the isotropic nature of the suppression in out-of-plane and in-plane field geometries further strengthen the Kondo model based interpretation of S(H, T).
Correlation effects are important for making predictions in the delta phase of Pu. Using a realistic treatment of the intra-atomic Coulomb correlations we address the long-standing problem of computing ground state properties. The equilibrium volume is obtained in good agreement with experiment when taking into account Hubbard U of the order 4 eV. For this U, the calculation predicts a 5f5 atomic-like configuration with L=5, S=5/2, and J=5/2 and shows a nearly complete compensation between spin and orbital magnetic moments.
Almost all oxide two-dimensional electron gases are formed in SrTiO$_3$-based heterostructures and the study of non-SrTiO$_3$ systems is extremely rare. Here, we report the realization of a two-dimensional electron gas in a CaTiO$_3$-based heterostru cture, CaTiO$_3$/LaTiO$_3$, grown epitaxially layer-by-layer on a NdGaO$_3$ (110) substrate via pulsed laser deposition. The high quality of the crystal and electronic structures are characterized by in-situ reflection high-energy electron diffraction, X-ray diffraction, and X-ray photoemission spectroscopy. Measurement of electrical transport validates the formation of a two-dimensional electron gas in the CaTiO$_3$/LaTiO$_3$ superlattice. It is revealed the room-temperature carrier mobility in CaTiO$_3$/LaTiO$_3$ is nearly 3 times higher than in CaTiO$_3$/YTiO$_3$, demonstrating the effect of TiO$_6$ octahedral tilts and rotations on carrier mobility of two-dimensional electron gases. Due to doped CaTiO$_3$ being an A-site polar metal, our results provide a new route to design novel A-site two-dimensional polar metals.
The combination of charge and spin degrees of freedom with electronic correlations in condensed matter systems leads to a rich array of phenomena, such as magnetism, superconductivity, and novel conduction mechanisms. While such phenomena are observe d in bulk materials, a richer array of behaviors becomes possible when these degrees of freedom are controlled in atomically layered heterostructures, where one can constrain dimensionality and impose interfacial boundary conditions. Here, we unlock a host of unique, hidden electronic and magnetic phase transitions in NdNiO$_3$ while approaching the two-dimensional (2D) limit, resulting from the differing influences of dimensional confinement and interfacial coupling. Most notably, we discover a new phase in fully 2D, single layer NdNiO$_3$, in which all signatures of the bulk magnetic and charge ordering are found to vanish. In addition, for quasi two-dimensional layers down to a thickness of two unit cells, bulk-type ordering persists but separates from the onset of insulating behavior in a manner distinct from that found in the bulk or thin film nickelates. Using resonant x-ray spectroscopies, first-principles theory, and model calculations, we propose that the single layer phase suppression results from a new mechanism of interfacial electronic reconstruction based on ionicity differences across the interface, while the phase separation in multi-layer NdNiO$_3$ emerges due to enhanced 2D fluctuations. These findings provide insights into the intertwined mechanisms of charge and spin ordering in strongly correlated systems in reduced dimensions and illustrate the ability to use atomic layering to access hidden phases.
103 - Alaska Subedi 2017
I study the structural and magnetic instabilities in LaNiO$_3$ using density functional theory calculations. From the non-spin-polarized structural relaxations, I find that several structures with different Glazer tilts lie close in energy. The $Pnma $ structure is marginally favored compared to the $Roverline{3}c$ structure in my calculations, suggesting the presence of finite-temperature structural fluctuations and a possible proximity to a structural quantum critical point. In the spin-polarized relaxations, both structures exhibit the $uparrow!!0!!downarrow!!0$ antiferromagnetic ordering with a rock-salt arrangement of the octahedral breathing distortions. The energy gain due to the breathing distortions is larger than that due to the antiferromagnetic ordering. These phases are semimetallic with small three-dimensional Fermi pockets, which is largely consistent with the recent observation of the coexistence of antiferromagnetism and metallicity in LaNiO$_3$ single crystals by Li textit{et al.} [arXiv:1705.02589].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا