ﻻ يوجد ملخص باللغة العربية
Tight bounds for several symmetric divergence measures are introduced, given in terms of the total variation distance. Each of these bounds is attained by a pair of 2 or 3-element probability distributions. An application of these bounds for lossless source coding is provided, refining and improving a certain bound by Csiszar. A new inequality relating $f$-divergences is derived, and its use is exemplified. The last section of this conference paper is not included in the recent journal paper that was published in the February 2015 issue of the IEEE Trans. on Information Theory (see arXiv:1403.7164), as well as some new paragraphs throughout the paper which are linked to new references.
This paper develops systematic approaches to obtain $f$-divergence inequalities, dealing with pairs of probability measures defined on arbitrary alphabets. Functional domination is one such approach, where special emphasis is placed on finding the be
This paper is focused on derivations of data-processing and majorization inequalities for $f$-divergences, and their applications in information theory and statistics. For the accessibility of the material, the main results are first introduced witho
This paper is focused on $f$-divergences, consisting of three main contributions. The first one introduces integral representations of a general $f$-divergence by means of the relative information spectrum. The second part provides a new approach for
We derive a lower bound on the smallest output entropy that can be achieved via vector quantization of a $d$-dimensional source with given expected $r$th-power distortion. Specialized to the one-dimensional case, and in the limit of vanishing distort
Distributionally robust optimization (DRO) is a widely used framework for optimizing objective functionals in the presence of both randomness and model-form uncertainty. A key step in the practical solution of many DRO problems is a tractable reformu