ﻻ يوجد ملخص باللغة العربية
We derive a lower bound on the smallest output entropy that can be achieved via vector quantization of a $d$-dimensional source with given expected $r$th-power distortion. Specialized to the one-dimensional case, and in the limit of vanishing distortion, this lower bound converges to the output entropy achieved by a uniform quantizer, thereby recovering the result by Gish and Pierce that uniform quantizers are asymptotically optimal as the allowed distortion tends to zero. Our lower bound holds for all $d$-dimensional memoryless sources having finite differential entropy and whose integer part has finite entropy. In contrast to Gish and Pierce, we do not require any additional constraints on the continuity or decay of the source probability density function. For one-dimensional sources, the derivation of the lower bound reveals a necessary condition for a sequence of quantizers to be asymptotically optimal as the allowed distortion tends to zero. This condition implies that any sequence of asymptotically-optimal almost-regular quantizers must converge to a uniform quantizer as the allowed distortion tends to zero.
Using a sharp version of the reverse Young inequality, and a Renyi entropy comparison result due to Fradelizi, Madiman, and Wang, the authors are able to derive Renyi entropy power inequalities for log-concave random vectors when Renyi parameters bel
An extension of the entropy power inequality to the form $N_r^alpha(X+Y) geq N_r^alpha(X) + N_r^alpha(Y)$ with arbitrary independent summands $X$ and $Y$ in $mathbb{R}^n$ is obtained for the Renyi entropy and powers $alpha geq (r+1)/2$.
Consider the set of all sequences of $n$ outcomes, each taking one of $m$ values, that satisfy a number of linear constraints. If $m$ is fixed while $n$ increases, most sequences that satisfy the constraints result in frequency vectors whose entropy
This paper considers an entropy-power inequality (EPI) of Costa and presents a natural vector generalization with a real positive semidefinite matrix parameter. This new inequality is proved using a perturbation approach via a fundamental relationshi
This paper provides tight bounds on the Renyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one. To that end, a tight lower bound on the Renyi entropy of a dis