ﻻ يوجد ملخص باللغة العربية
We propose a method for representing motion information for video classification and retrieval. We improve upon local descriptor based methods that have been among the most popular and successful models for representing videos. The desired local descriptors need to satisfy two requirements: 1) to be representative, 2) to be discriminative. Therefore, they need to occur frequently enough in the videos and to be be able to tell the difference among different types of motions. To generate such local descriptors, the video blocks they are based on must contain just the right amount of motion information. However, current state-of-the-art local descriptor methods use video blocks with a single fixed size, which is insufficient for covering actions with varying speeds. In this paper, we introduce a long-short term motion feature that generates descriptors from video blocks with multiple lengths, thus covering motions with large speed variance. Experimental results show that, albeit simple, our model achieves state-of-the-arts results on several benchmark datasets.
In this paper, we present Long Short-term TRansformer (LSTR), a new temporal modeling algorithm for online action detection, by employing a long- and short-term memories mechanism that is able to model prolonged sequence data. It consists of an LSTR
Spatial and temporal relationships, both short-range and long-range, between objects in videos, are key cues for recognizing actions. It is a challenging problem to model them jointly. In this paper, we first present a new variant of Long Short-Term
Spatio-temporal representations in frame sequences play an important role in the task of action recognition. Previously, a method of using optical flow as a temporal information in combination with a set of RGB images that contain spatial information
To understand the world, we humans constantly need to relate the present to the past, and put events in context. In this paper, we enable existing video models to do the same. We propose a long-term feature bank---supportive information extracted ove
Video object detection is a fundamental problem in computer vision and has a wide spectrum of applications. Based on deep networks, video object detection is actively studied for pushing the limits of detection speed and accuracy. To reduce the compu