ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-Term Feature Banks for Detailed Video Understanding

140   0   0.0 ( 0 )
 نشر من قبل Chao-Yuan Wu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To understand the world, we humans constantly need to relate the present to the past, and put events in context. In this paper, we enable existing video models to do the same. We propose a long-term feature bank---supportive information extracted over the entire span of a video---to augment state-of-the-art video models that otherwise would only view short clips of 2-5 seconds. Our experiments demonstrate that augmenting 3D convolutional networks with a long-term feature bank yields state-of-the-art results on three challenging video datasets: AVA, EPIC-Kitchens, and Charades.



قيم البحث

اقرأ أيضاً

Our world offers a never-ending stream of visual stimuli, yet todays vision systems only accurately recognize patterns within a few seconds. These systems understand the present, but fail to contextualize it in past or future events. In this paper, w e study long-form video understanding. We introduce a framework for modeling long-form videos and develop evaluation protocols on large-scale datasets. We show that existing state-of-the-art short-term models are limited for long-form tasks. A novel object-centric transformer-based video recognition architecture performs significantly better on 7 diverse tasks. It also outperforms comparable state-of-the-art on the AVA dataset.
Spatial and temporal relationships, both short-range and long-range, between objects in videos, are key cues for recognizing actions. It is a challenging problem to model them jointly. In this paper, we first present a new variant of Long Short-Term Memory, namely Relational LSTM, to address the challenge of relation reasoning across space and time between objects. In our Relational LSTM module, we utilize a non-local operation similar in spirit to the recently proposed non-local network to substitute the fully connected operation in the vanilla LSTM. By doing this, our Relational LSTM is capable of capturing long and short-range spatio-temporal relations between objects in videos in a principled way. Then, we propose a two-branch neural architecture consisting of the Relational LSTM module as the non-local branch and a spatio-temporal pooling based local branch. The local branch is utilized for capturing local spatial appearance and/or short-term motion features. The two branches are concatenated to learn video-level features from snippet-level ones which are then used for classification. Experimental results on UCF-101 and HMDB-51 datasets show that our model achieves state-of-the-art results among LSTM-based methods, while obtaining comparable performance with other state-of-the-art methods (which use not directly comparable schema). Further, on the more complex large-scale Charades dataset, we obtain a large 3.2% gain over state-of-the-art methods, verifying the effectiveness of our method in complex understanding.
This paper proposes a novel memory-based online video representation that is efficient, accurate and predictive. This is in contrast to prior works that often rely on computationally heavy 3D convolutions, ignore actual motion when aligning features over time, or operate in an off-line mode to utilize future frames. In particular, our memory (i) holds the feature representation, (ii) is spatially warped over time to compensate for observer and scene motions, (iii) can carry long-term information, and (iv) enables predicting feature representations in future frames. By exploring a variant that operates at multiple temporal scales, we efficiently learn across even longer time horizons. We apply our online framework to object detection in videos, obtaining a large 2.3 times speed-up and losing only 0.9% mAP on ImageNet-VID dataset, compared to prior works that even use future frames. Finally, we demonstrate the predictive property of our representation in two novel detection setups, where features are propagated over time to (i) significantly enhance a real-time detector by more than 10% mAP in a multi-threaded online setup and to (ii) anticipate objects in future frames.
Video object detection is a fundamental problem in computer vision and has a wide spectrum of applications. Based on deep networks, video object detection is actively studied for pushing the limits of detection speed and accuracy. To reduce the compu tation cost, we sparsely sample key frames in video and treat the rest frames are non-key frames; a large and deep network is used to extract features for key frames and a tiny network is used for non-key frames. To enhance the features of non-key frames, we propose a novel short-term feature aggregation method to propagate the rich information in key frame features to non-key frame features in a fast way. The fast feature aggregation is enabled by the freely available motion cues in compressed videos. Further, key frame features are also aggregated based on optical flow. The propagated deep features are then integrated with the directly extracted features for object detection. The feature extraction and feature integration parameters are optimized in an end-to-end manner. The proposed video object detection network is evaluated on the large-scale ImageNet VID benchmark and achieves 77.2% mAP, which is on-par with state-of-the-art accuracy, at the speed of 30 FPS using a Titan X GPU. The source codes are available at url{https://github.com/hustvl/LSFA}.
Much of recent research has been devoted to video prediction and generation, yet most of the previous works have demonstrated only limited success in generating videos on short-term horizons. The hierarchical video prediction method by Villegas et al . (2017) is an example of a state-of-the-art method for long-term video prediction, but their method is limited because it requires ground truth annotation of high-level structures (e.g., human joint landmarks) at training time. Our network encodes the input frame, predicts a high-level encoding into the future, and then a decoder with access to the first frame produces the predicted image from the predicted encoding. The decoder also produces a mask that outlines the predicted foreground object (e.g., person) as a by-product. Unlike Villegas et al. (2017), we develop a novel training method that jointly trains the encoder, the predictor, and the decoder together without highlevel supervision; we further improve upon this by using an adversarial loss in the feature space to train the predictor. Our method can predict about 20 seconds into the future and provides better results compared to Denton and Fergus (2018) and Finn et al. (2016) on the Human 3.6M dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا