ترغب بنشر مسار تعليمي؟ اضغط هنا

The Frenkel Line: a direct experimental evidence for the new thermodynamic boundary

144   0   0.0 ( 0 )
 نشر من قبل Dima Bolmatov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supercritical fluids play a significant role in elucidating fundamental aspects of liquid matter under extreme conditions. They have been extensively studied at pressures and temperatures relevant to various industrial applications. However, much less is known about the structural behaviour of supercritical fluids and no structural crossovers have been observed in static compression experiments in any temperature and pressure ranges beyond the critical point. The structure of supercritical state is currently perceived to be uniform everywhere on the pressure-temperature phase diagram, and to change only in a monotonic way even moving around the critical point, not only along isotherms or isobars. Conversely, we observe structural crossovers for the first time in a deeply supercritical sample through diffraction measurements in a diamond anvil cell and discover a new thermodynamic boundary on the pressure-temperature diagram. We explain the existence of these crossovers in the framework of the phonon theory of liquids using molecular dynamics simulations. The obtained results are of prime importance since it implies a global reconsideration of the mere essence of the supercritical phase. Furthermore, this discovery may pave the way to new unexpected applications and to the exploration of exotic behaviour of confined fluids relevant to geo- and planetary sciences.



قيم البحث

اقرأ أيضاً

322 - T. Lin , X. Ke , M. Thesberg 2013
Spin ice materials, such as Dy2Ti2O7 and Ho2Ti2O7, have been the subject of much interest for over the past fifteen years. Their low temperature strongly correlated state can be mapped onto the proton disordered state of common water ice and, consequ ently, spin ices display the same low temperature residual Pauling entropy as water ice. Interestingly, it was found in a previous study [X. Ke {it et. al.} Phys. Rev. Lett. {bf 99}, 137203 (2007)] that, upon dilution of the magnetic rare-earth ions (Dy^{3+} and Ho^{3+}) by non-magnetic Yttrium (Y^{3+}) ions, the residual entropy depends {it non-monotonically} on the concentration of Y^{3+} ions. In the present work, we report results from Monte Carlo simulations of site-diluted microscopic dipolar spin ice models (DSIM) that account quantitatively for the experimental specific heat measurements, and thus also for the residual entropy, as a function of dilution, for both Dy2Ti2O7 and Ho2Ti2O7. The main features of the dilution physics displayed by the magnetic specific heat data are quantitatively captured by the diluted DSIM up to, and including, 85% of the magnetic ions diluted (x=1.7). The previously reported departures in the residual entropy between Dy2Ti2O7 versus Ho2Ti2O7, as well as with a site-dilution variant of Paulings approximation, are thus rationalized through the site-diluted DSIM. For 90% (x=1.8) and 95% (x=1.9) of the magnetic ions diluted, we find a significant discrepancy between the experimental and Monte Carlo specific heat results. We discuss some possible reasons for this disagreement.
We revisit the Lieb-Liniger model for $n$ bosons in one dimension with attractive delta interaction in a half-space $mathbb{R}^+$ with diagonal boundary conditions. This model is integrable for arbitrary value of $b in mathbb{R}$, the interaction par ameter with the boundary. We show that its spectrum exhibits a sequence of transitions, as $b$ is decreased from the hard-wall case $b=+infty$, with successive appearance of boundary bound states (or boundary modes) which we fully characterize. We apply these results to study the Kardar-Parisi-Zhang equation for the growth of a one-dimensional interface of height $h(x,t)$, on the half-space with boundary condition $partial_x h(x,t)|_{x=0}=b$ and droplet initial condition at the wall. We obtain explicit expressions, valid at all time $t$ and arbitrary $b$, for the integer exponential (one-point) moments of the KPZ height field $bar{e^{n h(0,t)}}$. From these moments we extract the large time limit of the probability distribution function (PDF) of the scaled KPZ height function. It exhibits a phase transition, related to the unbinding to the wall of the equivalent directed polymer problem, with two phases: (i) unbound for $b>-frac{1}{2}$ where the PDF is given by the GSE Tracy-Widom distribution (ii) bound for $b<-frac{1}{2}$, where the PDF is a Gaussian. At the critical point $b=-frac{1}{2}$, the PDF is given by the GOE Tracy-Widom distribution.
The structural arrest of a polymeric suspension might be driven by an increase of the cross--linker concentration, that drives the gel transition, as well as by an increase of the polymer density, that induces a glass transition. These dynamical cont inuous (gel) and discontinuous (glass) transitions might interfere, since the glass transition might occur within the gel phase, and the gel transition might be induced in a polymer suspension with glassy features. Here we study the interplay of these transitions by investigating via event--driven molecular dynamics simulation the relaxation dynamics of a polymeric suspension as a function of the cross--linker concentration and the monomer volume fraction. We show that the slow dynamics within the gel phase is characterized by a long sub-diffusive regime, which is due both to the crowding as well as to the presence of a percolating cluster. In this regime, the transition of structural arrest is found to occur either along the gel or along the glass line, depending on the length scale at which the dynamics is probed. Where the two line meet there is no apparent sign of higher order dynamical singularity. Logarithmic behavior typical of $A_{3}$ singularity appear inside the gel phase along the glass transition line. These findings seem to be related to the results of the mode coupling theory for the $F_{13}$ schematic model.
222 - A. Biltmo , P. Henelius 2008
We analyze recent experiments on the dilute rare-earth compound LiHo_xY_(1-x)F_4 in the context of an effective Ising dipolar model. Using a Monte Carlo method we calculate the low-temperature behavior of the specific heat and linear susceptibility, and compare our results to measurements. In our model the susceptibility follows a Curie-Weiss law at high temperature, chi ~ 1/(T-T_cw), with a Curie-Weiss temperature that scales with dilution, T_cw ~ x, consistent with early experiments. We also find that the peak in the specific heat scales linearly with dilution, C_max(T) ~ x, in disagreement with recent experiments. Experimental studies do not reach a consensus on the functional form of these quantities, and in particular we do not see reported scalings of the form chi ~ T^-0.75 and chi ~ exp(-T/T_0). Furthermore we calculate the ground state magnetization as a function of dilution, and re-examine the phase diagram around the critical dilution x_c=0.24(3). We find that the spin glass susceptibility for the Ising model does not diverge below x_c, while recent experiments give strong evidence for a stable spin-glass phase in LiHo_0.167Y_0.833F_4.
365 - Giancarlo Jug 2017
The problems of the intermediate-range atomic structure of glasses and of the mechanism for the glass transition are approached from the low-temperature end in terms of a scenario for the atomic organization that justifies the use of an extended tunn eling model. The latter is crucial for the explanation of the magnetic and compositional effects discovered in non-metallic glasses in the Kelvin and milli-Kelvin temperature range. The model relies on the existence of multi-welled local potentials for the effective tunneling particles that are a manifestation of a non-homogeneous atomic structure deriving from the established dynamical heterogeneities that characterize the supercooled liquid state. It is shown that the extended tunneling model can successfully explain a range of experiments at low temperatures, but the proposed non-homogeneous atomic structure scenario is then tested in the light of available high resolution electron microscopy imaging of the structure of some glasses and on the behaviour near the transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا