ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical arrest: interplay of the glass and of the gel transitions

175   0   0.0 ( 0 )
 نشر من قبل Nagi Khalil
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structural arrest of a polymeric suspension might be driven by an increase of the cross--linker concentration, that drives the gel transition, as well as by an increase of the polymer density, that induces a glass transition. These dynamical continuous (gel) and discontinuous (glass) transitions might interfere, since the glass transition might occur within the gel phase, and the gel transition might be induced in a polymer suspension with glassy features. Here we study the interplay of these transitions by investigating via event--driven molecular dynamics simulation the relaxation dynamics of a polymeric suspension as a function of the cross--linker concentration and the monomer volume fraction. We show that the slow dynamics within the gel phase is characterized by a long sub-diffusive regime, which is due both to the crowding as well as to the presence of a percolating cluster. In this regime, the transition of structural arrest is found to occur either along the gel or along the glass line, depending on the length scale at which the dynamics is probed. Where the two line meet there is no apparent sign of higher order dynamical singularity. Logarithmic behavior typical of $A_{3}$ singularity appear inside the gel phase along the glass transition line. These findings seem to be related to the results of the mode coupling theory for the $F_{13}$ schematic model.



قيم البحث

اقرأ أيضاً

We investigate the heterogeneous dynamics in a model, where chemical gelation and glass transition interplay, focusing on the dynamical susceptibility. Two independent mechanisms give raise to the correlations, which are manifested in the dynamical s usceptibility: one is related to the presence of permanent clusters, while the other is due to the increase of particle crowding as the glass transition is approached. The superposition of these two mechanisms originates a variety of different behaviours. We show that these two mechanisms can be unentangled considering the wave vector dependence of the dynamical susceptibility.
It has been shown recently that predictions from Mode-Coupling Theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on th e regime around the dynamical transition in three dimensions, Mode-Coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, Mode-Coupling results, and mean-field results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes --small cage expansion and replicated Hyper-Netted-Chain (RHNC)-- provide the correct qualitative picture for the transition, namely a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.
We revisit the universal behavior of crystalline membranes at and below the crumpling transition, which pertains to the mechanical properties of important soft and hard matter materials, such as the cytoskeleton of red blood cells or graphene. Specif ically, we perform large-scale Monte Carlo simulations of a triangulated two-dimensional phantom network which is freely fluctuating in three-dimensional space. We obtain a continuous crumpling transition characterized by critical exponents which we estimate accurately through the use of finite-size techniques. By controlling the scaling corrections, we additionally compute with high accuracy the asymptotic value of the Poisson ratio in the flat phase, thus characterizing the auxetic properties of this class of systems. We obtain agreement with the value which is universally expected for polymerized membranes with a fixed connectivity.
We investigate the generalized p-spin models that contain arbitrary diagonal operators U with no reflection symmetry. We derive general equations that give an opportunity to uncover the behavior of the system near the glass transition at different (c ontinuous) p. The quadrupole glass with J=1 is considered as an illustrating example. It is shown that the crossover from continuous to discontinuous glass transition to one-step replica breaking solution takes place at p=3.3 for this model. For p <2+Delta p, where Delta p= 0.5 is a finite value, stable 1RSB-solution disappears. This behaviour is strongly different from that of the p-spin Ising glass model.
Understanding the physics of glass formation remains one of the major unsolved challenges of condensed matter science. As a material solidifies into a glass, it exhibits a spectacular slowdown of the dynamics upon cooling or compression, but at the s ame time undergoes only minute structural changes. Among the numerous theories put forward to rationalize this complex behavior, Mode-Coupling Theory (MCT) stands out as the only framework that provides a fully first-principles-based description of glass phenomenology. This review outlines the key physical ingredients of MCT, its predictions, successes, and failures, as well as recent improvements of the theory. We also discuss the extension and application of MCT to the emerging field of non-equilibrium active soft matter
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا