ترغب بنشر مسار تعليمي؟ اضغط هنا

A large new family of filled skutterudites stabilized by electron count

140   0   0.0 ( 0 )
 نشر من قبل Huixia Luo Huixia Luo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the interplay of theory and experiment, a large new family of filled group 9 (Co, Rh and Ir) skutterudites is designed and synthesized. The new materials fill the empty cages in the structures of the known binary CoSb3, RhSb3 and IrSb3 skutterudites with alkaline, alkaline earth, and rare earth atoms to create compounds of the type AyB4X12; A atoms fill the cages to a fraction y, B are the group 9 transition metals, and X is a mixture of electronegative main group elements chosen to achieve chemical stability by adjusting the electron counts to electron-precise values. Forty-three new compounds are reported, antimony-tin and phosphorous-silicon based, with 63 compositional variations presented. The new family of compounds is large and general. The results described here can be extended to the synthesis of hundreds of new group 9 filled skutterudites.



قيم البحث

اقرأ أيضاً

We propose new topological insulators in cerium filled skutterudite (FS) compounds based on ab initio calculations. We find that two compounds CeOs4As12 and CeOs4Sb12 are zero gap materials with band inversion between Os-d and Ce-f orbitals, which ar e thus parent compounds of two and three-dimensional topological insulators just like bulk HgTe. At low temperature, both compounds become topological Kondo insulators, which are Kondo insulators in the bulk, but have robust Dirac surface states on the boundary. This new family of topological insulators has two advantages compared to previous ones. First, they can have good proximity effect with other superconducting FS compounds to realize Majarona fermions. Second, the antiferromagnetism of CeOs4Sb12 at low temperature provides a way to realize the massive Dirac fermion with novel topological phenomena.
Electrides are ionic crystals in which the electrons prefer to occupy free space, serving as anions. Because the electrons prefer to be in the pockets, channels, or layers to the atomic orbitals around the nuclei, it has been challenging to find elec trides with partially filled d-shells, since an unoccupied d-shell provides an energetically favourable location for the electrons to occupy. We recently predicted the existence of electrides with partially filled d-shells using high-throughput computational screening. Here, we provide an experimental support using X-ray absorption spectroscopy and X-ray and neutron diffraction to show that Sr3CrN3 is indeed an electride despite its partial d-shell configuration. Our findings indicate that Sr3CrN3 is the first known electride with a partially filled d-shell, in agreement with theory, which significantly broadens the criteria for the search for new electride materials.
142 - Qing Jie , Juan Zhou , Xun Shi 2010
p-type Ce1.05Fe4Sb12.04 filled skutterudites with much improved thermoelectric properties have been synthesized by rapidly converting nearly amorphous ribbons into crystalline pellets under pressure. It is found that this process greatly suppresses g rain growth and second phase formation/segregation, and hence results in the samples consisting of nano-sized grains with strongly-coupled grain boundaries, as observed by transmission electron microscopy. The room temperature carrier mobility in these samples is significantly higher (nearly double) than those in the samples of the same starting composition made by the conventional solid-state reaction. Nanostructure reduces the lattice thermal conductivity, while cleaner grain boundaries permit higher electron conduction.
La-filled skutterudites LaxCo4Sb12 (x : 0.25 and 0.5) have been synthesized and sintered in one step under high-pressure conditions at 3.5 GPa in a piston-cylinder hydrostatic press. The structural properties of the reaction products were characteriz ed by synchrotron X-ray powder diffraction, clearly showing an uneven filling factor of the skutterudite phases, confirmed by transmission electron microscopy. The non-homogeneous distribution of La filling atoms is adequate to produce a significant decrease in lattice thermal conductivity, mainly due to strain field scattering of high-energy phonons. Furthermore, the lanthanum filler primarily acts as an Einstein-like vibrational mode having a strong impact on the phonon scattering. Extra-low thermal conductivity values of 2.39 W/mK and 1.30 W/mK are measured for La0.25Co4Sb12 and La0.5Co4Sb12 nominal compositions at 780 K, respectively. Besides this, lanthanum atoms have contributed to increase the charge carrier concentration in the samples. In the case of La0.25Co4Sb12, there is an enhancement of the power factor and an improvement of the thermoelectric properties.
436 - G. Rogl , A. Grytsiv , P. Heinrich 2017
The best p-type skutterudites so far are didymium filled, Fe/Co substituted, Sb-based skutterudites. Substitution at the Sb-sites influences the electronic structure, deforms the Sb4-rings, enhances the scattering of phonons on electrons and impuriti es and this way reduces the lattice thermal conductivity. In this paper we study structural and transport properties of p-type skutterudites with the nominal composition DD0.7Fe2.7Co1.3Sb11.7{Ge/Sn}0.3, which were prepared by a rather fast reaction-annealing-melting technique. The Ge-doped sample showed impurities, which did not anneal out completely and even with ZT > 1 the result was not satisfying. However, the single-phase Sn-doped sample, DD0.7Fe2.7Co1.3Sb11.8Sn0.2, showed a lower thermal and lattice thermal conductivity than the undoped skutterudite leading to a higher ZT=1.3, hitherto the highest ZT for a p-type skutterudite. Annealing at 570 K for 3 days proved the stability of the microstructure. After severe plastic deformation (SPD), due to additionally introduced defects, an enhancement of the electrical resistivity was compensated by a significantly lower thermal conductivity and the net effect led to a record high figure of merit: ZT = 1.45 at 850 K for DD0.7Fe2.7Co1.3Sb11.8Sn0.2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا