ترغب بنشر مسار تعليمي؟ اضغط هنا

The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos

148   0   0.0 ( 0 )
 نشر من قبل Steven Dazeley
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a follow-on phase incorporating the IsoDAR neutrino beam, the detector would have world-class sensitivity to sterile neutrino signatures and to non-standard electroweak interactions (NSI). WATCHMAN will also be a major, U.S. based integration platform for a host of technologies relevant for the Long-Baseline Neutrino Facility (LBNF) and other future large detectors. This white paper describes the WATCHMAN conceptual design,and presents the results of detailed simulations of sensitivity for the projects nonproliferation and physics goals. It also describes the advanced technologies to be used in WATCHMAN, including high quantum efficiency photomultipliers, Water-Based Liquid Scintillator (WbLS), picosecond light sensors such as the Large Area Picosecond Photo Detector (LAPPD), and advanced pattern recognition and particle identification methods.



قيم البحث

اقرأ أيضاً

85 - D. L. Danielson 2019
When monitoring a reactor site for nuclear nonproliferation purposes, the presence of an unknown or hidden nuclear reactor could be obscured by the activities of a known reactor of much greater power nearby. Thus when monitoring reactor activities by the observation of antineutrino emissions, one must discriminate known background reactor fluxes from possible unknown reactor signals under investigation. To quantify this discrimination, we find the confidence to reject the (null) hypothesis of a single proximal reactor, by exploiting directional antineutrino signals in the presence of a second, unknown reactor. In particular, we simulate the inverse beta decay (IBD) response of a detector filled with a 1 kT fiducial mass of Gadolinium-doped liquid scintillator in mineral oil. We base the detector geometry on that of WATCHMAN, an upcoming antineutrino monitoring experiment soon to be deployed at the Boulby mine in the United Kingdom whose design and deployment will be detailed in a forthcoming white paper. From this simulation, we construct an analytical model of the IBD event distribution for the case of one $4mathrm{ GWt}pm2%$ reactor 25 km away from the detector site, and for an additional, unknown, 35 MWt reactor 3 to 5 km away. The effects of natural-background rejection cuts are approximated. Applying the model, we predict $3sigma$ confidence to detect the presence of an unknown reactor within five weeks, at standoffs of 3 km or nearer. For more distant unknown reactors, the $3sigma$ detection time increases significantly. However, the relative significance of directional sensitivity also increases, providing up to an eight week speedup to detect an unknown reactor at 5 km away. Therefore, directionally sensitive antineutrino monitoring can accelerate the mid-field detection of unknown reactors whose operation might otherwise be masked by more powerful reactors in the vicinity.
279 - C. Lane , S.M. Usman , J. Blackmon 2015
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the Reactor Anti neutrino Anomaly. NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a Raghavan Optical Lattice (ROL) consisting of 3375 boron or $^6$Li loaded plastic scintillator cubical cells 6.3,cm (2.500) on a side. Cell boundaries have a 0.127,mm (0.005) air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
110 - J. Caravaca , B. J. Land , M. Yeh 2020
This paper presents measurements of the scintillation light yield and time profile for a number of concentration of water-based liquid scintillator, formulated from linear alkylbenzene (LAB) and 2,5-diphenyloxazole (PPO). We find that the scintillati on light yield is linear with the concentration of liquid scintillator in water between 1 and 10% with a slope of 127.9+-17.0 ph/MeV/concentration and an intercept value of 108.3+-51.0 ph/MeV, the latter being illustrative of non-linearities with concentration at values less than 1%. This is larger than expected from a simple extrapolation of the pure liquid scintillator light yield. The measured time profiles are consistently faster than that of pure liquid scintillator, with rise times less than 250ps and prompt decay constants in the range of 2.1-2.85ns. Additionally, the separation between Cherenkov and scintillation light is quantified using cosmic muons in the CHESS experiment for each formulation, demonstrating an improvement in separation at the centimeter scale. Finally, we briefly discuss the prospects for large-scale detectors.
MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water-Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches and the detection of neutrinos from supernovae, solar, and atmospheric neutrinos, as well as neutrinos from a future beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. This paper provides an overview of the latest studies on the expected performance of MEMPHYS in view of detailed estimates of its physics reach, mainly concerning neutrino beams.
154 - Lindley Winslow 2013
The last decade has been the decade of nanotechnology, a length scale which is of particular interest since it is here that we see the transition from the classical to the quantum world. In this transition to the quantum regime new phenomena appear t hat have proven valuable in a wide range of applications. This whitepaper focusses on the simplest nanotechnology, the spherical nanoparticles and their possible application to particle physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا