ترغب بنشر مسار تعليمي؟ اضغط هنا

Fragility of ferromagnetic double exchange interactions and pressure tuning of magnetism in 3d-5d double perovskite Sr2FeOsO6

141   0   0.0 ( 0 )
 نشر من قبل Larissa Veiga
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to tune exchange (magnetic) interactions between 3d transition metals in perovskite structures has proven to be a powerful route to discovery of novel properties. Here we demonstrate that the introduction of 3d-5d exchange pathways in double perovskites enables additional tunability, a result of the large spatial extent of 5d wave functions. Using x-ray probes of magnetism and structure at high pressure, we show that compression of Sr2FeOsO6 drives an unexpected continuous change in the sign of Fe-Os exchange interactions and a transition from antiferromagnetic to ferrimagnetic order. We analyze the relevant electron-electron interactions, shedding light into fundamental differences with the more thoroughly studied 3d-3d systems.



قيم البحث

اقرأ أيضاً

The magnetic structure of Ca$_2$MnReO$_6$ double perovskite is investigated by neutron powder diffraction and bulk magnetization, showing dominant non-collinear Mn magnetic moments [$4.35(7)$ $mu_B$] that are orthogonally aligned with the small Re mo ments [$0.22(4)$ $mu_B$]. $Ab$-initio electronic structure calculations show that the strong spin-orbit coupling for Re $5d$ electrons combined with a relatively modest on-site Coulomb repulsion ($U_{eff}^{Re} gtrsim 0.6$ eV) is sufficient to render this material insulating. This is a rare example of spin-orbit assisted Mott insulator outside the realm of iridates, with remarkable magnetic properties.
We have carried out inelastic neutron scattering experiments to study magnetic excitations in ordered double perovskite Ca$_2$FeReO$_6$. We found a well-defined magnon mode with a bandwidth of $sim$50meV below the ferri-magnetic ordering temperature ($T_csim$520K), similar to previously studied Ba$_2$FeReO$_6$. The spin excitation is gapless for most temperatures within the magnetically ordered phase. However, a spin gap of $sim$10meV opens up below $sim$150K, which is well below the magnetic ordering temperature but coincides with a previously reported metal-insulator transition and onset of structural distortion. The observed temperature dependence of spin gap provides strong evidence for ordering of Re orbitals at $sim$150~K, in accordance with earlier proposal put forward by Oikawa $it{et.,al}$ based on neutron diffraction [J. Phys. Soc. Jpn., $bf{72}$, 1411 (2003)] as well as recent theoretical work by Lee and Marianetti [Phys. Rev. B, $bf{97}$, 045102 (2018)]. The presence of separate orbital and magnetic ordering in Ca$_2$FeReO$_6$ suggests weak coupling between spin and orbital degrees of freedom and hints towards a sub-dominant role played by spin orbit coupling in describing its magnetism. In addition, we observed only one well-defined magnon band near magnetic zone boundary, which is incompatible with simple ferrimagnetic spin waves arising from Fe and Re local moments, but suggests a strong damping of Re magnon mode.
179 - G. Cao , T. F. Qi , L. Li 2013
We synthesize and study single crystals of a new double-perovskite Sr2YIrO6. Despite two strongly unfavorable conditions for magnetic order, namely, pentavalent Ir5+(5d4) ions which are anticipated to have Jeff=0 singlet ground states in the strong s pin-orbit coupling (SOC) limit, and geometric frustration in a face centered cubic structure formed by the Ir5+ ions, we observe this iridate to undergo a novel magnetic transition at temperatures below 1.3 K. We provide compelling experimental and theoretical evidence that the origin of magnetism is in an unusual interplay between strong non-cubic crystal fields and intermediate-strength SOC. Sr2YIrO6 provides a rare example of the failed dominance of SOC in the iridates.
123 - S. Agrestini , K. Chen , C.-Y. Kuo 2019
We report on our investigation on the magnetism of the iridate double perovskite Sr$_2$CoIrO$_6$, a nominally Ir$^{5+}$ Van Vleck $J_{eff}=0$ system. Using x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy at the Ir-$L_ {2,3}$ edges, we found a nearly zero orbital contribution to the magnetic moment and thus an apparent breakdown of the $J_{eff}=0$ ground state. By carrying out also XAS and XMCD experiments at the Co-$L_{2,3}$ edges and by performing detailed full atomic multiplet calculations to simulate all spectra, we discovered that the compound consists of about 90% Ir$^{5+}$ ($J_{eff}=0$) and Co$^{3+}$ ($S=2$) and 10% Ir$^{6+}$ ($S=3/2$) and Co$^{2+}$ ($S=3/2$). The magnetic signal of this minority Ir$^{6+}$ component is almost equally strong as that of the main Ir$^{5+}$ component. We infer that there is a competition between the Ir$^{5+}$-Co$^{3+}$ and the Ir$^{6+}$-Co$^{2+}$ configurations in this stoichiometric compound.
From Raman spectroscopy, magnetization, and thermal-expansion on the system La2/3(Ca1-xSrx)1/3MnO3, we have been able to provide a quantitative basis for the heterogeneous electronic model for manganites exhibiting colossal magnetoresistance (CMR). W e construct a mean-field model that accounts quantitatively for the measured deviation of TC(x) from the TC predicted by de Gennes double exchange in the adiabatic approximation, and predicts the occurrence of a first order transition for a strong coupling regime, in accordance with the experiments. The existence of a temperature interval TC<T<T* where CMR may be found is discussed, in connection with the occurrence of an idealized Griffiths phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا