ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on weighted homogeneous Siciak-Zaharyuta extremal functions

134   0   0.0 ( 0 )
 نشر من قبل Barbara Drinovec Drnov\\v{s}ek
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that for any given upper semicontinuous function $varphi$ on an open subset $E$ of $mathbb C^nsetminus{0}$, such that the complex cone generated by $E$ minus the origin is connected, the homogeneous Siciak-Zaharyuta function with the weight $varphi$ on $E$, can be represented as an envelope of a disc functional.



قيم البحث

اقرأ أيضاً

163 - Guangbin Ren , Xieping Wang 2015
In this paper, we present an alternative and elementary proof of a sharp version of the classical boundary Schwarz lemma by Frolova et al. with initial proof via analytic semigroup approach and Julia-Caratheodory theorem for univalent holomorphic sel f-mappings of the open unit disk $mathbb Dsubset mathbb C$. Our approach has its extra advantage to get the extremal functions of the inequality in the boundary Schwarz lemma.
258 - D. Burns , N. Levenberg , S. Ma`u 2014
We study the smoothness of the Siciak-Zaharjuta extremal function associated to a convex body in $mathbb{R}^2$. We also prove a formula relating the complex equilibrium measure of a convex body in $mathbb{R}^n$ to that of its Robin indicatrix. The main tool we use are extremal ellipses.
Let $mathsf M$ and $mathsf M _{mathsf S}$ respectively denote the Hardy-Littlewood maximal operator with respect to cubes and the strong maximal operator on $mathbb{R}^n$, and let $w$ be a nonnegative locally integrable function on $mathbb{R}^n$. We define the associated Tauberian functions $mathsf{C}_{mathsf{HL},w}(alpha)$ and $mathsf{C}_{mathsf{S},w}(alpha)$ on $(0,1)$ by [ mathsf{C}_{mathsf{HL},w}(alpha) :=sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M chi_E(x) > alpha}) ] and [ mathsf{C}_{mathsf{S},w}(alpha) := sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M _{mathsf S}chi_E(x) > alpha}). ] Utilizing weighted Solyanik estimates for $mathsf M$ and $mathsf M_{mathsf S}$, we show that the function $mathsf{C}_{mathsf{HL},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}})^{-1}}(0,1)$ and $mathsf{C}_{mathsf{S},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}^ast})^{-1}}(0,1)$, where the constant $c_n>1$ depends only on the dimension $n$.
This is an auxiliary note to [12]. To be precise, here we have gathered the proofs of all the statements in [12, Section 5] that happen to have points of contact with techniques recently developed in Chousionis-Pratt [5] and Chunaev [6].
We give an in-depth analysis of a 1-parameter family of electrified droplets first described in D. Khavinson et. al. (2005). We also investigate a technique for searching for new solutions to the droplet equation, and rederive via this technique a 1- parameter family of physical droplets, which were first discovered by D. Crowdy (1999). We speculate on extensions of these solutions, in particular to the case of a droplet with multiple connected components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا