ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremal functions of boundary Schwarz lemma

169   0   0.0 ( 0 )
 نشر من قبل Xieping Wang
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present an alternative and elementary proof of a sharp version of the classical boundary Schwarz lemma by Frolova et al. with initial proof via analytic semigroup approach and Julia-Caratheodory theorem for univalent holomorphic self-mappings of the open unit disk $mathbb Dsubset mathbb C$. Our approach has its extra advantage to get the extremal functions of the inequality in the boundary Schwarz lemma.



قيم البحث

اقرأ أيضاً

153 - Xieping Wang , Guangbin Ren 2015
In this paper, we generalize a recent work of Liu et al. from the open unit ball $mathbb B^n$ to more general bounded strongly pseudoconvex domains with $C^2$ boundary. It turns out that part of the main result in this paper is in some certain sense just a part of results in a work of Bracci and Zaitsev. However, the proofs are significantly different: the argument in this paper involves a simple growth estimate for the Caratheodory metric near the boundary of $C^2$ domains and the well-known Grahams estimate on the boundary behavior of the Caratheodory metric on strongly pseudoconvex domains, while Bracci and Zaitsev use other arguments.
We prove a Schwarz lemma for a domain E in 3-dimensional complex space that arises in connection with a problem in H infinity control theory. We describe a class of automorphisms of E and determine the distinguished boundary of E. We obtain a type of Schwarz-Pick lemma for a two by two mu-synthesis problem.
262 - D. Burns , N. Levenberg , S. Ma`u 2014
We study the smoothness of the Siciak-Zaharjuta extremal function associated to a convex body in $mathbb{R}^2$. We also prove a formula relating the complex equilibrium measure of a convex body in $mathbb{R}^n$ to that of its Robin indicatrix. The main tool we use are extremal ellipses.
93 - Weike Yu 2021
In this paper, we study a special exhaustion function on almost Hermitian manifolds and establish the existence result by using the Hessian comparison theorem. From the viewpoint of the exhaustion function, we establish related Schwarz type lemmas fo r almost holomorphic maps between two almost Hermitian manifolds. As corollaries, we deduce Liouville type theorems for almost holomorphic maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا