ترغب بنشر مسار تعليمي؟ اضغط هنا

The physics of accretion-ejection with LOFT

147   0   0.0 ( 0 )
 نشر من قبل Enrico Bozzo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of the physics of accretion and ejection around compact objects. For a summary, we refer to the paper.



قيم البحث

اقرأ أيضاً

284 - J. M. Miller 2009
Disk accretion may be the fundamental astrophysical process. Stars and planets form through the accretion of gas in a disk. Black holes and galaxies co-evolve through efficient disk accretion onto the central supermassive black hole. Indeed, approxim ately 20 percent of the ionizing radiation in the universe is supplied by disk accretion onto black holes. And large-scale structures - galaxy clusters - are dramatically affected by the relativistic jets that result from accretion onto black holes. Yet, we are still searching for observational answers to some very basic questions that underlie all aspects of the feedback between black holes and their host galaxies: How do disks transfer angular momentum to deliver gas onto compact objects? How do accretion disks launch winds and jets?
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of high-mass X-ray binaries and ultra-luminous X-ray sources. For a summary, we refer to the paper.
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of magnetospheres of isolated neutron stars. For a summary, we refer to the paper.
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of active galactic nuclei. For a summary, we refer to the paper.
The stellar binary system LS I +61303, composed of a compact object in an eccentric orbit around a B0 Ve star, emits from radio up to gamma-ray energies. The orbital modulation of radio spectral index, X-ray, and GeV gamma-ray data suggests the prese nce of two peaks. This two-peaked profile is in line with the accretion theory predicting two accretion-ejection events for LS I +61303 along the 26.5 d orbit. However, the existing multiwavelength data are not simultaneous. In this paper, we report the results of a campaign covering radio, X-ray, and gamma-ray observations of the system along one single orbit. Our results confirm the two predicted events along the orbit and in addition show that the positions of radio and gamma-ray peaks are coincident with X-ray dips as expected for radio and gamma-ray emitting ejections depleting the X-ray emitting accretion flow. We discuss future observing strategies for a systematic study of the accretion-ejection physical processes in LS I +61303.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا