ﻻ يوجد ملخص باللغة العربية
The stellar binary system LS I +61303, composed of a compact object in an eccentric orbit around a B0 Ve star, emits from radio up to gamma-ray energies. The orbital modulation of radio spectral index, X-ray, and GeV gamma-ray data suggests the presence of two peaks. This two-peaked profile is in line with the accretion theory predicting two accretion-ejection events for LS I +61303 along the 26.5 d orbit. However, the existing multiwavelength data are not simultaneous. In this paper, we report the results of a campaign covering radio, X-ray, and gamma-ray observations of the system along one single orbit. Our results confirm the two predicted events along the orbit and in addition show that the positions of radio and gamma-ray peaks are coincident with X-ray dips as expected for radio and gamma-ray emitting ejections depleting the X-ray emitting accretion flow. We discuss future observing strategies for a systematic study of the accretion-ejection physical processes in LS I +61303.
Our aim is to show how variable Doppler boosting of an intrinsically variable jet can explain the long-term modulation of 1667 pm 8 days observed in the radio emission of LSI+61303. The physical scenario is that of a conical, magnetized plasma jet ha
We present Very Long Baseline Interferometry (VLBI) observations of the high mass X-ray binary LSI+61303, carried out with the European VLBI Network (EVN). Over the 11 hour observing run, performed 10 days after a radio outburst, the radio source sho
Disk accretion may be the fundamental astrophysical process. Stars and planets form through the accretion of gas in a disk. Black holes and galaxies co-evolve through efficient disk accretion onto the central supermassive black hole. Indeed, approxim
We proposed that the spectral evolution of transient X-ray binaries (XrB) is due to an interplay between two flows: a standard accretion disk (SAD) in the outer parts and a jet-emitting disk (JED) in the inner parts. We showed in previous papers that
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of active galactic nuclei. For a summary, we refer to the paper.