ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Mechanical and Electronic Properties of Thiolated Gold Nanocrystals

310   0   0.0 ( 0 )
 نشر من قبل Dominique Vuillaume
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a quantitative exploration, combining experiment and simulation, of the mechanical and electronic properties, as well as the modifications induced by an alkylthiolated coating, at the single NP level. We determine the response of the NPs to external pressure in a controlled manner by using an atomic force microscope tip. We find a strong reduction of their Young modulus, as compared to bulk gold, and a significant influence of strain in the electronic properties of the alkylthiolated NPs. Electron transport measurements of tiny molecular junctions (NP/alkylthiol/CAFM tip) show that the effective tunnelling barrier through the adsorbed monolayer strongly decreases with increasing the applied load, which translates in a remarkable and unprecedented increase of the tunnel current. These observations are successfully explained using simulations based on finite element analysis (FEA) and first-principles calculations that permit to consider the coupling between the mechanical response of the system and the electric dipole variations at the interface.



قيم البحث

اقرأ أيضاً

As graphene became one of the most important materials today, there is a renewed interest on others similar structures. One example is silicene, the silicon analogue of graphene. It share some the remarkable graphene properties, such as the Dirac con e, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.
Stability and electronic properties of atomic layers of GaN are investigated in the framework of the van der Waals-density functional theory. We find that the ground state of the layered GaN is a planar graphene-like configuration rather than a buckl ed bulk-like configuration. Application of an external perpendicular electric field to the layered GaN induces distinct stacking-dependent features of the tunability of the band gap; the band gap of the monolayer does not change whereas that of the trilayer GaN is significantly reduced for the applied field of 0.4 V/ {AA}. It is suggested that such a stacking-dependent tunability of the band gap in the presence of an applied field may lead to novel applications of the devices based on the layered GaN.
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [Phys. Rev. Lett., 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.
182 - M. D. Schroer , J. R. Petta 2009
The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are ~4X larger in the nominall y defect-free segments of the wire. We also find that dark field optical intensity is correlated with the mobility, suggesting a simple route for selecting wires with a low defect density. At low temperatures, FETs fabricated on high defect density segments of InAs nanowires showed transport properties consistent with single electron charging, even on devices with low resistance ohmic contacts. The charging energies obtained suggest quantum dot formation at defects in the wires. These results reinforce the importance of controlling the defect density in order to produce high quality electrical and optical devices using InAs nanowires.
We report the effects of variation in length on the electronic structure of CdSe nanorods derived from atomic clusters and passivated by fictitious hydrogen atoms. These nanorods are augmented by attaching gold clusters at both the ends to form a nan odumbbell. The goal is to assess the changes at nanolevel after formation of contacts with gold clusters serving as electrodes and compare the results with experimental observations [PRL, 95, 056805 (2005)]. Calculations involving nanorods of length 4.6 Angstrom to 116.6 Angstrom are performed using density functional theory implemented within plane-wave basis set. The binding energy per atom saturates for nanorod of length 116.6 Angstrom. It is interesting to note that upon attaching gold clusters, the nanorods shorter than 27 Angstrom develop metallicity by means of metal induced gap states (MIGS). Longer nanorods exhibit a nanoscale Schottky barrier emerging at the center. For these nanorods, interfacial region closest to the gold electrodes shows a finite density of states in the gap due to MIGS, which gradually decreases towards the center of the nanorod opening up a finite gap. Bader charge analysis indicates localized charge transfer from metal to semiconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا